Advertisement

Molecular Neurobiology

, Volume 34, Issue 1, pp 51–65 | Cite as

Cellular and molecular alterations in mice with deficient and reduced serotonin transporters

Article

Abstract

The function of serotonin transporters (SERTs) is related to mood regulation. Mice with deficient or reduced SERT function (SERT knockout mice) show several behavioral changes, including increased anxiety-like behavior, increased sensitivity to stress, and decreases in aggressive behavior. Some of these behavioral alterations are similar to phenotypes found in humans with short alleles of polymorphism in the 5-hydroxytryptamine (5-HT) transporter-linked promoter region (5-HTTLPR). Therefore, SERT knockout mice can be used as a tool to study 5-HTTLPR-related variations in personality and may be the etiology of affective disorders. This article focuses on the cellular and molecular alterations in SERT knockout mice, including changes in 5-HT concentrations and its metabolism, alterations in 5-HT receptors, impaired hypothalamic-pituitary-adrenal gland axis, developmental changes in the neurons and brain, and influence on other neurotransmitter transporters and receptors. It also discusses the possible relationships between these alterations and the behavioral changes in these mice. The knowledge provides the foundation for understanding the cellular and molecular mechanisms that mediate the SERT-related mood regulation, which may have significant impact on understanding the etiology of affective disorders and developing better therapeutic approaches for affective disorders.

Index Entries

5-HT metabolism 5-HT1A receptors 5-HT receptors HPA axis stress development dopamine transporter anxiety 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhou F. C., Tao-Cheng J. H., Segu L., Patel T., and Wang Y. (1998) Serotonin transporters are located on the axons beyond the synaptic junctions: anatomical and functional evidence. Brain Res. 805, 241–254.PubMedCrossRefGoogle Scholar
  2. 2.
    Owens M. J. (1997) Molecular and cellular mechanisms of antidepressant drugs. Depress. Anx. 1996–97 4, 153–159.CrossRefGoogle Scholar
  3. 3.
    Artigas F., Bel N., Casanovas J. M., and Romero L. (1996) Adaptative changes of the serotonergic system after antidepressant treatments. Adv. Exp. Med. Biol. 398, 51–59.PubMedGoogle Scholar
  4. 4.
    Caspi A., Sugden K., Moffitt T. E., et al. (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301, 386–389.PubMedCrossRefGoogle Scholar
  5. 5.
    Lesch K. P., Bengel D., Heils A., et al. (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274, 1527–1531.PubMedCrossRefGoogle Scholar
  6. 6.
    Lesch K. P. and Mossner R. (1998) Genetically driven variation in serotonin uptake: is there a link to affective spectrum, neurodevelopmental, and neurodegenerative disorders? Biol. Psychiatr. 44, 179–192.CrossRefGoogle Scholar
  7. 7.
    Murphy D. L., Li Q., Engel S., et al. (2001) Genetic perspectives on the serotonin transporter. Brain Res. Bull. 56, 487–494.PubMedCrossRefGoogle Scholar
  8. 8.
    Retz W., Retz-Junginger P., Supprian T., Thome J., and Rosler M. (2004) Association of serotonin transporter promoter gene polymorphism with violence: relation with personality disorders, impulsivity, and childhood ADHD psychopathology. Behav. Sci. Law 22, 415–425.PubMedCrossRefGoogle Scholar
  9. 9.
    Heils A., Teufel A., Petri S., et al. (1996) Allelic variation of human serotonin transporter gene expression. J. Neurochem. 66, 2621–2624.PubMedCrossRefGoogle Scholar
  10. 10.
    Holmes A., Yang R. J., Murphy D. L., and Crawley J. N. (2001) Abnormal emotional behaviors and age-related obesity in 5-HT transporter deficient mice. Soc. Neurosci. Abstr. 27, 987.5.Google Scholar
  11. 11.
    Greenberg B. D., Li Q., Lucas F. R., et al. (2000) Association between the serotonin transporter promoter polymorphism and personality traits in a primarily female population sample. American J. Med. Genet. 96, 202–216.CrossRefGoogle Scholar
  12. 12.
    Hariri A. R., Mattay V. S., Tessitore A., et al. (2002) Serotonin transporter genetic variation and the response of the human amygdala. Science 297, 400–403.PubMedCrossRefGoogle Scholar
  13. 13.
    Barr C. S., Newman T. K., Shannon C., et al. (2004) Rearing condition and Rh5-HTTLPR interact to influence limbic-hypothalamic-pituitary-adrenal axis response to stress in infant macaques. Biologic. Psychiatr. 55, 733–738.CrossRefGoogle Scholar
  14. 14.
    Bengel D., Murphy D. L., Andrews A. M., et al. (1998) Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylenedioxy-methamphetamine (“ecstasy”) in serotonin transporter-deficient mice. Molecular Pharmacol 53, 649–655.Google Scholar
  15. 15.
    Lira A., Zhou M. M., Castanon N., et al. (2003) Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol. Psychiatr. 54, 960–971.CrossRefGoogle Scholar
  16. 16.
    Ansorge M. S., Zhou M. M., Lira A., Hen R., and Gingrich J. A. (2004) Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306, 879–881.PubMedCrossRefGoogle Scholar
  17. 17.
    Holmes A., Murphy D. L., and Crawley J. N. (2002) Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology 161, 160–167.PubMedCrossRefGoogle Scholar
  18. 18.
    Holmes A., Yang R. J., Lesch K. P., Crawley J. N., and Murphy D. L. (2003) Mice lacking the serotonin transporter exhibit 5-HT1A receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology 28, 2077–2088.PubMedGoogle Scholar
  19. 19.
    Holmes A., Murphy D. L., and Crawley, J. N. (2003b) Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol. Psychiatr. 54, 953–959.CrossRefGoogle Scholar
  20. 20.
    Murphy D. L., Wichems C., Li Q., and Heils A. (1999) Molecular manipulations as tools for enhancing our understanding of 5-HT neurotransmission. Trends Pharmacol. Sci. 20, 246–252.PubMedCrossRefGoogle Scholar
  21. 21.
    Murphy D. L., Lerner, A., Rudnick G., and Lesch K. P. (2004) Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol. Inter. 4, 109–123.CrossRefGoogle Scholar
  22. 22.
    Perez X. A. and Andrews A. M. (2005) Chronoamperometry to determine differential reductions in uptake in brain synaptosomes from serotonin transporter knockout mice. Analyt. Chem. 77, 818–826.CrossRefGoogle Scholar
  23. 23.
    Montanez S., Owens W. A., Gould G. G., Murphy D. L., and Daws L. C. (2003) Exaggerated effect of fluvoxamine in heterozygote serotonin transporter knockout mice. J. Neurochem. 86, 210–219.PubMedCrossRefGoogle Scholar
  24. 24.
    Fabre V., Beaufour C., Evrard A., et al., (2000) Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur. J. Neurosci. 12, 2299–2310.PubMedCrossRefGoogle Scholar
  25. 25.
    Mathews T. A., Fedele D. E., Coppelli F. M., Avila A. M., Murphy D. L., and Andrews A. M. (2004) Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J. Neurosci. Methods 140, 169–181.PubMedCrossRefGoogle Scholar
  26. 26.
    Kim D. K., Tolliver T. J., Huang S. J., et al. (2005) Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacology 49, 798–810.PubMedCrossRefGoogle Scholar
  27. 27.
    Hoyer D., Clarkle D. E., Fozard, J. R., et al. (1994) VII. International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol. Rev. 46, 157–204.PubMedGoogle Scholar
  28. 28.
    Hoyer D., Hannon J. P., and Martin G. R. (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 71, 533–554.PubMedCrossRefGoogle Scholar
  29. 29.
    den Boer J. A., Bosker F. J., and Slaap B. R. (2000) Serotonergic drugs in the treatment of depressive and anxiety disorders. Human Psychopharmacol. Clin. Experiment. 15, 315–336.CrossRefGoogle Scholar
  30. 30.
    Graeff F. G., Guimaraes F. S., De Andrade T. G., and Deakin J. F. (1996) Role of 5-HT in Stress, Anxiety, and Depression. Pharmacol. Biochem. Behav. 54, 129–141.PubMedCrossRefGoogle Scholar
  31. 31.
    Griebel G. (1995) 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: more than 30 years of research. Pharmacol. Ther. 65, 319–395.PubMedCrossRefGoogle Scholar
  32. 32.
    Gingrich J. A. and Hen R. (2001) Dissecting the role of the serotonin system in neuropsychiatric disorders using knockout mice. Psychopharmacology 155, 1–10.PubMedCrossRefGoogle Scholar
  33. 33.
    Groenink L., Pattij T., de Jongh R., et al. (2003) 5-HT1A receptor knockout mice and mice overexpressing corticotropin-releasing hormone in models of anxiety. Eur. J. Pharmacol. 463, 185–197.PubMedCrossRefGoogle Scholar
  34. 34.
    Olivier B., Pattij T., Wood S. J., Oosting R., Sarnyai Z., and Toth M. (2001) The 5-HT1A receptor knockout mouse and anxiety. Behav. Pharmacol. 12, 439–450.PubMedGoogle Scholar
  35. 35.
    Holmes A., Li, Q., Murphy D. L., Gold E., and Crawley J. N. (2003) Abnormal anxiety-related behaviour in serotonin transporter null mutant mice: the influence of genetic background. Genes Brain Behav. 2, 365–380.PubMedCrossRefGoogle Scholar
  36. 36.
    Wichems C. H., Li Q., Holmes A., et al. (2000) Mechanisms mediating the increased anxiety-like behavior and excessive responses to stress in mice lacking the serotonin transporter. Soc. Neurosci. Abstr. 26, 400.Google Scholar
  37. 37.
    Li Q., Wichems C., Heils A., Lesch K. P., and Murphy D. L. (2000) Reduction in the density and expression, but not G-protein coupling of serotonin receptors (5-HT1A) in 5-HT transporter knock-out mice: gender and brain region differences. J. Neurosci. 20, 7888–7895.PubMedGoogle Scholar
  38. 38.
    Li Q., Wichems C., Heils A., Van de Kar L. D., Lesch K. P., and Murphy D. L. (1999) Reduction of 5-hydroxytryptamine (5-HT)(1A)-mediated temperature and neuroendocrine responses and 5-HT(1A) binding sites in 5-HT transporter knockout mice. J. Pharmacol. Exp. Ther. 291, 999–1007.PubMedGoogle Scholar
  39. 39.
    Gobbi G., Murphy D. L., Lesch K. P., and Blier P. (2001) Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study. J. Pharmacol. Exp. Ther. 296, 987–995.PubMedGoogle Scholar
  40. 40.
    Lanfumey L., La Cour C. M., Froger N., and Hamon M. (2000) 5-HT-HPA interactions in two models of transgenic mice relevant to major depression. Neurochem. Res. 25, 1199–1206.PubMedCrossRefGoogle Scholar
  41. 41.
    Bouali S., Evrard A., Chastanet M., Lesch K. P., Hamon M., and Adrien J. (2003) Sex hormone-dependent desensitization of 5-HT1A autoreceptors in knockout mice deficient in the 5-HT transporter. Eur. J. Neuroscience 18, 2203–2212.CrossRefGoogle Scholar
  42. 42.
    Bethea C. L., Gundlah C., and Mirkes S. J. (2000) Ovarian steroid action in the serotonin neural system of macaques. Novartis Found. Symp. 230, 112–130.PubMedCrossRefGoogle Scholar
  43. 43.
    Carrasco G. A., Barker S. A., Zhang Y., et al. (2004) Estrogen treatment increases the levels of regulator of G protein signaling-Z1 in the hypothalamic paraventricular nucleus: possible role in desensitization of 5-hydroxytryptamine(1A) receptors. Neuroscience 127, 261–267.PubMedCrossRefGoogle Scholar
  44. 44.
    D'Souza D. N., Zhang Y. H., Damjanoska K. J., et al. (2004) Estrogen reduces serotonin-1A receptor-mediated oxytocin release and G alpha(i/o/z) proteins in the hypothalamus of ovariectomized rats. Neuroendocrinology 80, 31–41.PubMedCrossRefGoogle Scholar
  45. 45.
    Le Saux M. and Di Paolo T. (2005) Changes in 5-HT1A receptor binding and G-protein activation in the rat brain after estrogen treatment: comparison with tamoxifen and raloxifene. J. Psychiatr. Neurosci. 30, 110–117.Google Scholar
  46. 46.
    Lu N. Z. and Bethea C. L. (2002) Ovarian steroid regulation of 5-HT1A receptor binding and G protein activation in female monkeys. Neuropsychopharmacology 27, 12–24.PubMedCrossRefGoogle Scholar
  47. 47.
    Azmitia E. C. (2001) Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res. Bull. 56, 413–424.PubMedCrossRefGoogle Scholar
  48. 48.
    Azmitia E. C. and Whitaker-Azmitia P. M. (1997) Development and adult plasticity of serotoninergic neurons and their target cells, in Serotoninergic Neurons and 5-HT Receptors in the CNS, Baumgarten H. G. and Gothert M., eds, Berlin: Springer, pp. 1–39.Google Scholar
  49. 49.
    Whitaker-Azmitia P. M. (2005) Behavioral and cellular consequences of increasing serotonergic activity during brain development: a role in autism?. Intern. J. Development. Neurosci. 23, 75–83.CrossRefGoogle Scholar
  50. 50.
    Li Q., Holmes A., Ma L., Van de Kar L. D., Garcia F., and Murphy D. L. (2004) Medial hypothalamic 5-hydroxytryptamine (5-HT)1A receptors regulate neuroendocrine responses to stress and exploratory locomotor activity: application of recombinant adenovirus containing 5-HT1A sequences. J. Neurosci. 24, 10,868–10,877.Google Scholar
  51. 51.
    Rittenhouse P. A., Bakkum E. A., O'Connor P. A., Carnes M., Bethea C. L., and Van de Kar L. D. (1992) Comparison of neuroendocrine and behavioral effects of ipsapirone, a 5-HT1A agonist, in three stress paradigms: immobilization, forced swim and conditioned fear. Brain Res. 580, 205–214.PubMedCrossRefGoogle Scholar
  52. 52.
    Saphier D., Farrar G. E. and Welch J. E. (1995) Differential inhibition of stress-induced adrenocortical responses by 5-HT1A agonists and by 5-HT2 and 5-HT3 antagonists. Psychoneuroendocrinology 20, 239–257.PubMedCrossRefGoogle Scholar
  53. 53.
    Saphier D. and Welch J. E. (1995) Effects of the serotonin1A agonist, 8-hydroxy-2-(di-n- propylamino)tetralin on neurochemical responses to stress. J. Neurochem. 64, 767–776.PubMedCrossRefGoogle Scholar
  54. 54.
    Li Q., Wichems C. H., Ma L., Van de Kar L. D., Garcia F., and Murphy D. L. (2003) Brain region-specific alterations of 5-HT2A and 5-HT2C receptors in serotonin transporter knockout mice. J. Neurochem. 84, 1256–1265.PubMedCrossRefGoogle Scholar
  55. 55.
    Rioux A., Fabre V., Lesch K. P., et al. (1999) Adaptive changes of serotonin 5-HT2A receptors in mice lacking the serotonin transporter. Neurosci. Lett. 262, 113–116.PubMedCrossRefGoogle Scholar
  56. 56.
    Hartig P. R., Hoffman B. J., Kaufman M. J., and Hirata F. (1990) The 5-HT1C receptor. Ann. NY Acad. Sci. 600, 149–166.PubMedCrossRefGoogle Scholar
  57. 57.
    Pompeiano M., Palacios J. M., and Mengod G. (1994) Distribution of the serotonin 5-HT2 receptor family MRNAs: comparison between 5-HT2A and 5-HT2C receptors. Mol. Brain Res. 23, 163–178.PubMedCrossRefGoogle Scholar
  58. 58.
    Broocks A., Bandelow B., George A., et al. (2000) Increased psychological responses and divergent neuroendocrine responses to M-CPP and ipsapirone in patients with panic disorder. Intern. Clin. Psychopharmacol. 15, 153–161.CrossRefGoogle Scholar
  59. 59.
    Preuss U. W., Soyka M., Bahlmann M., et al. (2000) Serotonin transporter gene regulatory region polymorphism (5-HTTLPR), [H-3]paroxetine binding in healthy control subjects and alcohol-dependent patients and their relationships to impulsivity. Psych. Res. 96, 51–61.CrossRefGoogle Scholar
  60. 60.
    Burns C. M., Chu H., Rueter S. M., et al. (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387, 303–308.PubMedCrossRefGoogle Scholar
  61. 61.
    Canton H., Emeson R. B., Barker E. L., et al. (1996) Identification, molecular cloning, and distribution of a short variant of the 5-Hydroxytryptamine2C receptor produced by alternative splicing. Mol Pharmacol 50, 799–807.PubMedGoogle Scholar
  62. 62.
    Niswender C. M., Sanders-Bush E., and Emeson R. B. (1998) Identification and characterization of RNA editing events within the 5-HT2C receptor. Ann. NY Acad. Sci. 861, 38–48.PubMedCrossRefGoogle Scholar
  63. 63.
    Wang Q., O'Brien P. J., Chen C. X., Cho D. S., Murray J. M., and Nishikura K. (2000) Altered G protein-coupling functions of RNA editing isoform and splicing variant serotonin2C receptors. J. Neurochem. 74, 1290–1300.PubMedCrossRefGoogle Scholar
  64. 64.
    Englander M. T., Dulawa S. C., Bhansali P., and Schmauss C. (2005) How stress and fluoxetine modulate serotonin 2C receptor pre-MRNA editing. J. Neurosci. 25, 648–651.PubMedCrossRefGoogle Scholar
  65. 65.
    Gurevich I., Tamir H., Arango V., Dwork A. J., Mann J. J., and Schmauss C. (2002) Altered editing of serotonin 2C receptor pre-MRNA in the prefrontal cortex of depressed suicide victims. Neuron 34, 349–356.PubMedCrossRefGoogle Scholar
  66. 66.
    Gurevich I., Englander M. T., Adlersberg M., Siegal N. B., and Schmauss C. (2002) Modulation of serotonin 2C receptor editing by sustained changes in serotonergic neurotransmission. J. Neurosci. 22, 10,529–10,532.Google Scholar
  67. 67.
    Heisler L. K., Chu H. M., and Tecott L. H. (1998) Epilepsy and obesity in serotonin 5-HT2C receptor mutant mice. Ann. NY Acad. Sci. 861, 74–78.PubMedCrossRefGoogle Scholar
  68. 68.
    Nonogaki K., Strack A. M., Dallman M. F., and Tecott L. H. (1998) Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene. Nat. Med. 4, 1152–1156.PubMedCrossRefGoogle Scholar
  69. 69.
    Vickers S. P., Clifton P. G., Dourish C. T., and Tecott L. H. (1999) Reduced satiating effect of D-fenfluramine in serotonin 5-HT(2C) receptor mutant mice. Psychopharmacology (Berl.) 143, 309–314.CrossRefGoogle Scholar
  70. 70.
    Mossner R., Schmitt A., Hennig T., et al. (2004) Quantitation of 5HT3 receptors in forebrain of serotonin transporter deficient mice. J. Neural Trans. 111, 27–35.CrossRefGoogle Scholar
  71. 71.
    Chen J. J., Li Z. S., Pan H., et al. (2001) Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high-affinity serotonin transporter: abnormal intestinal motility and the expression of cation transporters. J. Neurosci. 21, 6348–6361.PubMedGoogle Scholar
  72. 72.
    Liu M. T., Rayport S., Jiang Y., Murphy D. L., and Gershon M. D. (2002) Expression and function of 5-HT3 receptors in the enteric neurons of mice lacking the serotonin transporter. Am. J. Physiol. Gastrointestinal Liver Physiol. 283, G1398-G1411.Google Scholar
  73. 73.
    Tjurmina O. A., Armando I., Saavedra J. M., Goldstein D. S., and Murphy D. L. (2002) Exaggerated adrenomedullary response to immobilization in mice with targeted disruption of the serotonin transporter gene. Endocrinology 143, 4520–4526.PubMedCrossRefGoogle Scholar
  74. 74.
    Persico A. M., Mengual E., Moessner R., et al. (2001) Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release. J. Neurosci. 21, 6862–6873.PubMedGoogle Scholar
  75. 75.
    Salichon N., Gaspar P., Upton A. L., et al. (2001) Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-HT transporter knock-out mice. J. Neurosci. 21, 884–896.PubMedGoogle Scholar
  76. 76.
    Esaki T., Cook M., Shimoji K., Murphy D. L., Sokoloff L., and Holmes A. (2005) Developmental disruption of serotonin transporter function impairs cerebral responses to whisker stimulation in mice. Proc. Nat. Acad. Sci. USA 102, 5582–5587.PubMedCrossRefGoogle Scholar
  77. 77.
    Freo U., Ori C., Dam M., Merico A., and Pizzolato G. (2000) Effects of acute and chronic treatment with fluoxetine on regional glucose cerebral metabolism in rats: implications for clinical therapies. Brain Res. 854, 35–41.PubMedCrossRefGoogle Scholar
  78. 78.
    Azmitia E. C. (2001) Neuronal instability: implications for Rett's syndrome. Brain Develop. 23, S1-S10.CrossRefGoogle Scholar
  79. 79.
    Persico A. M., Baldi A., Dell'Acqua M. L., et al. (2003) Reduced programmed cell death in brains of serotonin transporter knockout mice. Neuroreport 14, 341–344.PubMedCrossRefGoogle Scholar
  80. 80.
    Zhou F. C., Lesch K. P., and Murphy D. L. (2002) Serotonin uptake into dopamine neurons via dopamine transporters: a compensatory alternative. Brain Res. 942, 109–119.PubMedCrossRefGoogle Scholar
  81. 81.
    Pan Y., Gembom E., Peng W., Lesch K. P., Mossner R., and Simantov R. (2001) Plasticity in serotonin uptake in primary neuronal cultures of serotonin transporter knockout mice. Brain Res. Dev. Brain Res. 126, 125–129.PubMedCrossRefGoogle Scholar
  82. 82.
    Holmes A., Yang R. J., Murphy D. L., and Crawley J. N. (2002) Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology 27, 914–923.PubMedCrossRefGoogle Scholar
  83. 83.
    Schmitt A., Mossner R., Gossmann A., et al. (2003) Organic cation transporter capable of transporting serotonin is up-regulated in serotonin transporter-deficient mice. J. Neurosci. Res. 71, 701–709.PubMedCrossRefGoogle Scholar
  84. 84.
    La Cour C. M., Hanoun N., Melfort M., et al. (2004) GABA(B) receptors in 5-HT transporter-and 5-HT1A receptor-knock-out mice: further evidence of a transduction pathway shared with 5-HT1A receptors. J. Neurochem. 89, 886–896.CrossRefGoogle Scholar
  85. 85.
    Mannoury L. C., Hanoun N., Melfort M., et al. (2004) GABA(B) Receptors in 5-HT transporter-and 5-HT1A receptor-knock-out mice: further evidence of a transduction pathway shared with 5-HT1A receptors. J. Neurochem. 89, 886–896.CrossRefGoogle Scholar
  86. 86.
    Mossner R., Albert D., Persico A. M., et al. (2000) Differential regulation of adenosine A(1) and A(2A) receptors in serotonin transporter and monoamine oxidase A-deficient mice. Eur. Neuropsychopharmacol. 10, 489–493.PubMedCrossRefGoogle Scholar
  87. 87.
    Kilic F., Murphy D. L., and Rudnick G. (2003) A human serotonin transporter mutation causes constitutive activation of transport activity. Mol. Pharmacol. 64, 440–446.PubMedCrossRefGoogle Scholar
  88. 88.
    Ozaki N., Goldman D., Kaye W. H., et al. (2003) Serotonin transporter missense mutation associated with a complex neuropsychiatric phenotype. Mol. Psych. 8, 933–936.CrossRefGoogle Scholar
  89. 89.
    David S. P., Murthy N. V., Rabiner E. A., et al. (2005) A functional genetic variation of the serotonin (5-HT) transporter affects 5-HT1A receptor binding in humans. J. Neurosci. 25, 2586–2590.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral SciencesUniversity of Texas Medical BranchGalveston

Personalised recommendations