Molecular Neurobiology

, Volume 33, Issue 3, pp 199–213 | Cite as

Changes in the expression of G protein-coupled receptor kinases and β-arrestins in mouse brain during cannabinoid tolerance

A role for ras-ERK cascade
  • Tiziana Rubino
  • Daniela Viganò
  • Fabrizio Premoli
  • Chiara Castiglioni
  • Silvia Bianchessi
  • Renata Zippel
  • Daniela Parolaro
Article

Abstract

The focus of our study was to determine the role of G protein-coupled receptor kinases (GRKs) and β-arrestins in agonist-induced CB1 receptor modulation during cannabinoid tolerance and their dependence from the extracellular signal-regulated kinase (ERK) cascade. In wild-type mice, chronic Δ9-tetrahydrocannabinol (THC) exposure significantly activated specific GRK and β-arrestin subunits in all the considered brain areas (striatum, cerebellum, hippocampus, and prefrontal cortex), suggesting their involvement in the adaptive processes underlying CB1 receptor downregulation and desensitization. These events were ERK-dependent in the striatum and cerebellum, because they were prevented in the genetic (Ras-GRF1 knockout mice) and pharmacological (SL327-pretreated mice) models of ERK activation inhibition, whereas in the hippocampus and prefrontal cortex, they appeared to be mostly ERK-independent. In the latter areas, ERK activation after chronic THC increased the transcription factors cyclic adenosine monophosphate response element-binding protein and Fos B as well as a downstream protein known as brain-derived neurotrophic factor. As a whole, our data suggest that in the striatum and cerebellum, THC-induced ERK activation could represent a key signaling event to initiate homologous desensitization of CB1 receptor, accounting for the development of tolerance to THC-induced hypolocomotion. In the prefrontal cortex and hippocampus, THC-induced alteration in GRKs and β-arrestins primarily depends on other kinases, whereas ERK activation could be part of the molecular adaptations that underlie the complex behavioral phenotype that defines the addicted state.

Index Entries

Cannabinoid tolerance GRKs β-arrestins ERK pathway CB1 receptor regulation Ras-GRF1 knockout mice SL327 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gonzalez S., Cebeira M., and Fernandez-Ruiz J. (2005) Cannabinoid tolerance and dependence: A review of studies in laboratory animals. Pharmacol. Biochem. Behav. 81, 300–318.PubMedCrossRefGoogle Scholar
  2. 2.
    Sim-Selley L. J. (2003) Regulation of cannabinoid CB1 receptors in the central nervous system by chronic cannabinoids. Crit. Rev. Neurobiol. 15, 91–119.PubMedCrossRefGoogle Scholar
  3. 3.
    Oviedo A., Glowa J., and Herkenham M. (1993) Chronic cannabinoid administration alters cannabinoid receptor binding in rat brain: a quantitative autoradiographic study. Brain Res. 616, 293–302.PubMedCrossRefGoogle Scholar
  4. 4.
    Romero J., Garcia L., Fernandez-Ruiz J. J., Cebeira M., and Ramos J. A. (1995) Changes in rat brain cannabinoid binding sites after acute or chronic exposure to their endogenous agonist, anandamide, or to delta 9-tetrahydrocannabinol. Pharmacol. Biochem. Behav. 51, 731–737.PubMedCrossRefGoogle Scholar
  5. 5.
    Romero J., Garcia-Palomero E., Castro J. G., Garcia-Gil L., Ramos J. A., and Fernandez-Ruiz J. J. (1997) Effects of chronic exposure to delta9-tetrahydrocannabinol on cannabinoid receptor binding and mRNA levels in several rat brain regions. Mol. Brain Res. 46, 100–108.PubMedCrossRefGoogle Scholar
  6. 6.
    Sim L. J., Hampson R. E., Deadwyler S. A., and Childers S. R. (1996) Effects of chronic treatment with delta9-tetrahydrocannabinol on cannabinoid-stimulated (35S)GTP gammaS autoradiography in rat brain. J. Neurosci. 16, 8057–8066.PubMedGoogle Scholar
  7. 7.
    Breivogel C. S., Childers S. R., Deadwyler S. A., Hampson R. E., Vogt L. J., and Sim-Selley L. J. (1999) Chronic delta9-tetrahydrocannabinol treatment produces a time-dependent loss of cannabinoid receptors and cannabinoid receptor-activated G proteins in rat brain. J. Neurochem. 73, 2447–2459.PubMedCrossRefGoogle Scholar
  8. 8.
    Rubino T., Viganò D., Massi P., et al. (2000a) Chronic delta-9-tetrahydrocannabinol treatment increases cAMP levels and cAMP-dependent protein kinase activity in some rat brain regions. Neuropharmacology 39, 1331–1336.PubMedCrossRefGoogle Scholar
  9. 9.
    Rubino T., Viganò D., Massi P., and Parolaro D. (2000b) Changes in the cannabinoid receptor binding, G protein coupling, and cyclic AMP cascade in the CNS of rats tolerant to and dependent on the synthetic cannabinoid compound CP55,940. J. Neurochem. 75, 2080–2086.PubMedCrossRefGoogle Scholar
  10. 10.
    Rubino T., Viganò D., Costa B., Colleoni M., and Parolaro D. (2000c) Loss of cannabinoid-stimulated guanosine 5′-O-(3-((35)S)Thiotriphosphate) binding without receptor down-regulation in brain regions of anandamide-tolerant rats. J. Neurochem. 75, 2478–2484.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee M. C., Smith F. L., Stevens D. L., and Welch S. P. (2003) The role of several kinases in mice tolerant to delta 9-tetrahydrocannabinol. J. Pharmacol. Exp. Ther. 305, 593–599.PubMedCrossRefGoogle Scholar
  12. 12.
    Rubino T., Forlani G., Viganò D., Zippel R., and Parolaro D. (2004) Modulation of extracellular signal-regulated kinases cascade by chronic delta 9-tetrahydrocannabinol treatment. Mol. Cell. Neurosci. 25, 355–362.PubMedCrossRefGoogle Scholar
  13. 13.
    Rubino T., Forlani G., Viganò D., Zippel R., and Parolaro D. (2005) Ras/ERK signalling in cannabinoid tolerance: from behaviour to cellular aspects. J. Neurochem. 93, 984–991.PubMedCrossRefGoogle Scholar
  14. 14.
    Atkins C. M., Selcher J. C., Petraitis J. J., Trzaskos J. M., and Sweatt J. D. (1998) The MAPK cascade is required for mammalian associative learning. Nat. Neurosci. 1, 602–609.PubMedCrossRefGoogle Scholar
  15. 15.
    Derkinderen P., Valijent E., Toutant M., et al. (2003) Regulation of Extracellular Signal-regulated Kinase by Cannabinoids in Hippocampus. J. Neurosci. 23, 2371–2382.PubMedGoogle Scholar
  16. 16.
    Brambilla R., Gnesutta N., Minichiello L., et al. (1997) A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature 390, 281–286.PubMedCrossRefGoogle Scholar
  17. 17.
    Bass C. E. and Martin B. R. (2000) Time course for the induction and maintenance of tolerance to Delta(9)-tetrahydrocannabinol in mice. Drug Alcohol Dep. 60, 113–119CrossRefGoogle Scholar
  18. 18.
    Pitcher J. A., Freedman N. J., and Lefkowitz R. J. (1998) G protein-coupled receptor kinases. Annu. Rev. Biochem. 67, 653–692.PubMedCrossRefGoogle Scholar
  19. 19.
    Lefkowitz R. J. (1998) G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J. Biol. Chem. 273, 18,677–18,680.CrossRefGoogle Scholar
  20. 20.
    Jin W., Brown S., Roche J. P., et al. (1999) Distinct domains of the CB1 cannabinoid receptor mediate desensitization and internalization. J. Neurosci. 19, 3773–3780.PubMedGoogle Scholar
  21. 21.
    Krupnick J. G. and Benovic J. L. (1998) The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu. Rev. Pharmacol. Toxicol. 38, 289–319.PubMedCrossRefGoogle Scholar
  22. 22.
    Romero J., Berrendero F., Manzanares J., et al. (1998) Time-course of the cannabinoid receptor down-regulation in the adult rat brain caused by repeated exposure to delta9-tetrahydrocannabinol. Synapse 30, 298–308.PubMedCrossRefGoogle Scholar
  23. 23.
    Hurlè M. A. (2001) Changes in the expression of G protein-coupled receptor kinases and beta-arrestin 2 in rat brain during opioid tolerance and supersensitivity. J. Neurochem. 77, 486–492.PubMedCrossRefGoogle Scholar
  24. 23.
    Daaka Y., Luttrell L. M., Ahn S., et al. (1998) Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J. Biol. Chem. 273, 685–688.PubMedCrossRefGoogle Scholar
  25. 24.
    Della Rocca G. J., Mukhin Y. V., Garnovskaya M. N., et al. (1999) Serotonin 5-HT1A receptor-mediated Erk activation requires calcium/ calmodulin-dependent receptor endocytosis. J. Biol. Chem. 274, 4749–4753.PubMedCrossRefGoogle Scholar
  26. 25.
    Trincavelli M. L., Tuscano D., Marroni M., Klotz K. N., Lucacchini A., and Martini C. (2002) Involvement of mitogen protein kinase cascade in agonist-mediated human A(3) adenosine receptor regulation. Biochim. Biophys. Acta 1591, 55–62.PubMedCrossRefGoogle Scholar
  27. 26.
    Schmidt H., Schulz S., Klutzny M., Koch T., Handel M., and Hollt V. (2000) Involvement of mitogen-activated protein kinase in agonist-induced phosphorylation of the mu-opioid receptor in HEK 293 cells. J. Neurochem. 74, 414–422.PubMedCrossRefGoogle Scholar
  28. 27.
    Shieh P. B., Hu S. C., Bobb K., Timmusk T., and Ghosh A. (1998) Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron 20, 727–740.PubMedCrossRefGoogle Scholar
  29. 28.
    Kang H. J. and Schuman E. M. (1995) Neurotrophin-induced modulation of synaptic transmission in the adult hippocampus. J. Physiol. Paris. 89, 11–22.PubMedCrossRefGoogle Scholar
  30. 29.
    Levine E. S., Dreyfus C. F., Black I. B., and Plummer M. R. (1995) Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc. Natl. Acad. Sci. USA 92, 8074–8077.PubMedCrossRefGoogle Scholar
  31. 30.
    Figurov A., Pozzo-Miller L. D., Olafsson P., Wang T., and Lu B. (1996) Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381, 706–709.PubMedCrossRefGoogle Scholar
  32. 31.
    Korte M., Staiger V., Griesbeck O., Thoenen H., and Bonhoeffer T. (1996) The involvement of brain-derived neurotrophic factor in hippocampal long-term potentiation revealed by gene targeting experiments. J. Physiol. Paris. 90, 157–164.PubMedCrossRefGoogle Scholar
  33. 32.
    Rutherford L. C., Nelson S. B., and Turrigiano G. G. (1998) BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron 21, 521–530.PubMedCrossRefGoogle Scholar
  34. 33.
    Hartmann M., Heumann R., and Lessmann V. (2001) Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J. 20, 5887–5897.PubMedCrossRefGoogle Scholar
  35. 34.
    Berke J. D. and Eichenbaum H. B. (2001) Drug addiction and the hippocampus. Science 294, 1235.PubMedCrossRefGoogle Scholar
  36. 35.
    Butovsky E., Juknat A., Goncharov I., et al. (2005) In vivo up-regulation of brain-derived neurotrophic factor in specific brain areas by chronic exposure to Delta-tetrahydrocannabinol. J. Neurochem. 93, 802–11.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Tiziana Rubino
    • 1
  • Daniela Viganò
    • 1
  • Fabrizio Premoli
    • 1
  • Chiara Castiglioni
    • 1
  • Silvia Bianchessi
    • 1
  • Renata Zippel
    • 2
  • Daniela Parolaro
    • 1
  1. 1.DBSF, Pharmacology Section, and Neuroscience CenterUniversity of InsubriaBusto Arsizio (VA)Italy
  2. 2.Department of Biomolecular Sciences and BiotechnologyUniversity of MilanMilanItaly

Personalised recommendations