Advertisement

Molecular Neurobiology

, Volume 33, Issue 2, pp 113–131 | Cite as

Mitochondrial involvement in amyotrophic lateral sclerosis

Trigger or target?
  • Sandra R. Bacman
  • Walter G. Bradley
  • Carlos T. Moraes
Article

Abstract

Despite numerous reports demonstrating mitochondrial abnormalities associated with amyotrophic lateral sclerosis (ALS), the role of mitochondrial dysfunction in the disease onset and progression remains unknown. The intrinsic mitochondrial apoptotic program is activated in the central nervous system of mouse models of ALS harboring mutant superoxide dismutase 1 protein. This is associated with the release of cytochrome-c from the mitochondrial intermembrane space and mitochondrial swelling. However, it is unclear if the observed mitochondrial changes are caused by the decreasing cellular viability or if these changes precede and actually trigger apoptosis. This article discusses the current evidence for mitochondrial involvement in familial and sporadic ALS and concludes that mitochondria is likely to be both a trigger and a target in ALS and that their demise is a critical step in the motor neuron death.

Index Entries

Mitochondria ALS apoptosis SOD1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rowland L. P. (1998) Diagnosis of amyotrophic lateral sclerosis. J. Neurol. Sci. 160 (Suppl 1), S6-S24.PubMedCrossRefGoogle Scholar
  2. 2.
    Brown R. H. Jr. (1995) Amyotrophic lateral sclerosis: recent insights from genetics and transgenic mice. Cell 80, 687–692.PubMedCrossRefGoogle Scholar
  3. 3.
    Fridovich I. (1986) Superoxide dismutases. Adv. Enzymol. Relat. Areas Mol. Biol. 58, 61–97.PubMedCrossRefGoogle Scholar
  4. 4.
    Rosen D. R. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 364, 362.PubMedGoogle Scholar
  5. 5.
    Culotta V.C., Klomp L. W., Strain J., Casareno R. L., Krems B., and Gitlin J. D. (1997) The copper chaperone for superoxide dismutase. J. Biol. Chem. 272, 23,469–23,472.CrossRefGoogle Scholar
  6. 6.
    Wong P. C., Waggoner D., Subramaniam J. R., et al. (2000) Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 97, 2886–2891.PubMedCrossRefGoogle Scholar
  7. 7.
    Gurney M. E. (1994) Transgenic-mouse model of amyotrophic lateral sclerosis. N. Engl. J. Med. 331, 1721,1722PubMedCrossRefGoogle Scholar
  8. 8.
    Dal Canto M. C. and Gurney M. E. (1994) Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am. J. Pathol. 145, 1271–1279.PubMedGoogle Scholar
  9. 9.
    Dal Canto M. C. and Gurney M. E. (1995) Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu,Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res. 676, 25–40.PubMedCrossRefGoogle Scholar
  10. 10.
    Gong Y. H., Parsadanian A. S., Andreeva A., Snider W. D., and Elliott J. L. (2000) Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J. Neurosci. 20, 660–665.PubMedGoogle Scholar
  11. 11.
    Lino M. M., Schneider C., and Caroni P. (2002) Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. J. Neurosci. 22, 4825–4832.PubMedGoogle Scholar
  12. 12.
    Xu Z. (2000) Mechanism and treatment of motoneuron degeneration in ALS: what have SOD1 mutants told us? Amyotroph. Lateral Scler. Other Motor Neuron Disord. 1, 225–234.PubMedCrossRefGoogle Scholar
  13. 13.
    Kong J. and Xu Z. (1998) Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J. Neurosci. 18, 3241–3250.PubMedGoogle Scholar
  14. 14.
    Kato S., Saeki Y., Aoki M., et al. (2004) Histological evidence of redox system breakdown caused by superoxide dismutase 1 (SOD1) aggregation is common to SOD1-mutated motor neurons in humans and animal models. Acta. Neuropathol. (Berl.) 107, 149–158.CrossRefGoogle Scholar
  15. 15.
    Wood J. D., Beaujeux T. P., and Shaw P. J. (2003) Protein aggregation in motor neurone disorders. Neuropathol. Appl. Neurobiol. 29, 529–545.PubMedCrossRefGoogle Scholar
  16. 16.
    Julien J. P. (1995) A role for neurofilaments in the pathogenesis of amyotrophic lateral sclerosis. Biochem. Cell Biol. 73, 593–597.PubMedGoogle Scholar
  17. 17.
    Mattiazzi M., D'Aurelio M., Gajewski C. D., et al. (2002) Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J. Biol. Chem. 277, 29,626–29,633.CrossRefGoogle Scholar
  18. 18.
    Przedborski S. (2004) Programmed cell death in amyotrophic lateral sclerosis: a mechanism of pathogenic and therapeutic importance. Neurologist 10, 1–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Cox P. A., Banack S. A., and Murch S. J. (2003) Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proc. Natl. Acad. Sci. USA 100, 13,380–13,383.CrossRefGoogle Scholar
  20. 20.
    Kruman I. I. and Mattson M. P. (1999) Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J. Neurochem. 72, 529–540.PubMedCrossRefGoogle Scholar
  21. 21.
    Hirano A. (1996) Neuropathology of ALS: an overview. Neurology 47, S63-S66.PubMedGoogle Scholar
  22. 22.
    Chung M. J. and Suh Y. L. (2002) Ultrastructural changes of mitochondria in the skeletal muscle of patients with amyotrophic lateral sclerosis. Ultrastruct. Pathol. 26, 3–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Wong P. C., Pardo C. A., Borchelt D. R., et al. (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116.PubMedCrossRefGoogle Scholar
  24. 24.
    Bendotti C., Calvaresi N., Chiveri L., et al. (2001) Early vacuolization and mitochondrial damage in motor neurons of FALS mice are not associated with apoptosis or with changes in cytochrome oxidase histochemical reactivity. J. Neurol. Sci. 191, 25–33.PubMedCrossRefGoogle Scholar
  25. 25.
    Higgins C. M., Jung C., and Xu Z. (2003) ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes. BMC Neurosci. 4, 16.PubMedCrossRefGoogle Scholar
  26. 26.
    Jaarsma D., Rognoni F., van Duijn W., Verspaget H. W., Haasdijk E. D., and Holstege J. C. (2001) CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations. Acta. Neuropathol. (Berl.) 102, 293–305.Google Scholar
  27. 27.
    Xu Z., Jung C., Higgins C., Levine J., and Kong J. (2004) Mitochondrial degeneration in amyotrophic lateral sclerosis. J. Bioenerg. Biomembr. 36, 395–399.PubMedCrossRefGoogle Scholar
  28. 28.
    Kirkinezos I. G., Bacman S. R., Hernandez D., et al. (2005) Cytochrome c association with the inner mitochondrial membrane is impaired in the CNS of G93A-SOD1 mice. J. Neurosci. 25, 164–172.PubMedCrossRefGoogle Scholar
  29. 29.
    Bowling A. C., Schulz J. B., Brown R. H. Jr., and Beal M. F. (1993) Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J. Neurochem. 61, 2322–2325.PubMedCrossRefGoogle Scholar
  30. 30.
    Browne S. E., Bowling A. C., Baik M. J., Gurney M., Brown R. H. Jr., and Beal M. F. (1998) Metabolic dysfunction in familial, but not sporadic, amyotrophic lateral sclerosis. J. Neurochem. 71, 281–287.PubMedCrossRefGoogle Scholar
  31. 31.
    Wiedemann F. R., Winkler K., Kuznetsov A. V., et al. (1998) Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J. Neurol. Sci. 156, 65–72.PubMedCrossRefGoogle Scholar
  32. 32.
    Borthwick G. M., Johnson M. A., Ince P. G., Shaw P. J., and Turnbull D. M. (1999) Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann. neurol. 46, 787–790.PubMedCrossRefGoogle Scholar
  33. 33.
    Vielhaber S., Kunz D., Winkler K., et al. (2000) Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis. Brain 123 (Pt. 7), 1339–1348.PubMedCrossRefGoogle Scholar
  34. 34.
    Echaniz-Laguna A., Zoll J., Ribera F., et al. (2002) Mitochondrial respiratory chain function in skeletal muscle of ALS patients. Ann. Neurol. 52, 623–627.PubMedCrossRefGoogle Scholar
  35. 35.
    Wiedemann F. R., Manfredi G., Mawrin C., Beal M. F., and Schon E. A. (2002) Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J. Neurochem. 80, 616–625.PubMedCrossRefGoogle Scholar
  36. 36.
    Jung C., Higgins C. M., and Xu Z. (2002) Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis. J. Neurochem. 83, 535–545.PubMedCrossRefGoogle Scholar
  37. 37.
    Menzies F. M., Cookson M. R., Taylor R. W., et al. (2002) Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain 125, 1522–1533.PubMedCrossRefGoogle Scholar
  38. 38.
    Swerdlow R. H., Parks J. K., Cassarino D. S., et al. (1998) Mitochondria in sporadic amyotrophic lateral sclerosis. Exp. Neurol. 153, 135–142.PubMedCrossRefGoogle Scholar
  39. 39.
    Gajewski C. D., Lin M. T., Cudkowicz M. E., Beal M. F., and Manfredi G. (2003) Mitochondrial DNA from platelets of sporadic ALS patients restores normal respiratory functions in rho(0) cells. Exp. Neurol. 179, 229–235.PubMedCrossRefGoogle Scholar
  40. 40.
    Ro L. S., Lai S. L., Chen C. M., and Chen S. T. (2003) Deleted 4977-bp mitochondrial DNA mutation is associated with sporadic amyotrophic lateral sclerosis: a hospital-based case-control study. Muscle Nerve 28, 737–743.PubMedCrossRefGoogle Scholar
  41. 41.
    Dhaliwal G. K. and Grewal R. P. (2000) Mitochondrial DNA deletion mutation levels are elevated in ALS brains. Neuroreport 11, 2507–2509.PubMedCrossRefGoogle Scholar
  42. 42.
    Menzies F. M., Ince P. G., and Shaw P. J. (2002) Mitochondrial involvement in amyotrophic lateral sclerosis. Neurochem. Int. 40, 543–551.PubMedCrossRefGoogle Scholar
  43. 43.
    Mawrin C., Kirches E., Krause G., et al. (2004) Single-cell analysis of mtDNA deletion levels in sporadic amyotrophic lateral sclerosis. Neuroreport 15, 939–943.PubMedCrossRefGoogle Scholar
  44. 44.
    Rosen D. R., Sapp P., O'Regan J., et al. (1994) Genetic linkage analysis of familial amyotrophic lateral sclerosis using human chromosome 21 microsatellite DNA markers. Am. J. Med. Genet. 51, 61–69.PubMedCrossRefGoogle Scholar
  45. 45.
    Mancuso M., Conforti F. L., Rocchi A., et al. (2004) Could mitochondrial haplogroups play a role in sporadic amyotrophic lateral sclerosis? Neurosci. Lett. 371, 158–162.PubMedCrossRefGoogle Scholar
  46. 46.
    Xu G. P., Dave K. R., Moraes C. T., et al. (2001) Dysfunctional mitochondrial respiration in the wobbler mouse brain. Neurosci. Lett. 300, 141–144.PubMedCrossRefGoogle Scholar
  47. 47.
    Wei Y. H., Lu C. Y., Lee H. C., Pang C. Y., and Ma Y. S. (1998) Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function. Ann. NY Acad. Sci. 854, 155–170.PubMedCrossRefGoogle Scholar
  48. 48.
    Shibata N., Nagai R., Uchida K., et al. (2001) Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Res. 917, 97–104.PubMedCrossRefGoogle Scholar
  49. 49.
    Simpson E. P., Henry Y. K., Henkel J. S., Smith R. G., and Appel S. H. (2004) Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology 62, 1758–1765.PubMedGoogle Scholar
  50. 50.
    Siciliano G., D'Avino C., Del Corona A., et al. (2002) Impaired oxidative metabolism and lipid peroxidation in exercising muscle from ALS patients. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 3, 57–62.PubMedCrossRefGoogle Scholar
  51. 51.
    Carri M. T., Ferri A., Cozzolino M., Calabrese L., and Rotilio G. (2003) Neurodegeneration in amyotrophic lateral sclerosis: the role of oxida tive stress and altered homeostasis of metals. Brain Res. Bull. 61, 365–374.PubMedCrossRefGoogle Scholar
  52. 52.
    Subramaniam J. R., Lyons W. E., Liu J., et al. (2002) Mutant SOD1 causes motor neuron disease independent of copper chaperone-mediated copper loading. Nat. Neurosci. 5, 301–307.PubMedCrossRefGoogle Scholar
  53. 53.
    Bush A. I. (2002) Is ALS caused by an altered oxidative activity of mutant superoxide dismutase? Nat. Neurosci. 5, 919; author reply 919–920.PubMedCrossRefGoogle Scholar
  54. 54.
    Liu D., Wen J., Liu J., and Li L. (1999) The roles of free radicals in amyotrophic lateral sclerosis: reactive oxygen species and elevated oxidation of protein, DNA, and membrane phospholipids. FASEB J. 13, 2318–2328.PubMedGoogle Scholar
  55. 55.
    Wootz H., Hansson I., Korhonen L., Napankangas U., and Lindholm D. (2004) Caspase-12 cleavage and increased oxidative stress during motoneuron degeneration in transgenic mouse model of ALS. Biochem. Biophys. Res. Commun. 322, 281–286.PubMedCrossRefGoogle Scholar
  56. 56.
    Hall E. D., Andrus P. K., Oostveen J. A., Fleck T. J., and Gurney M. E. (1998) Relationship of oxygen radical-induced lipid peroxidative damage to disease onset and progression in a transgenic model of familial ALS. J. Neurosci. Res. 53, 66–77.PubMedCrossRefGoogle Scholar
  57. 57.
    Garcia Fernandez M. I., Ceccarelli, D., and Muscatello U. (2004) Use of the fluorescent dye 10-N-nonyl acridine orange in quantitative and location assays of cardiolipin: a study on different experimental models. Anal. Biochem. 328, 174–180.PubMedCrossRefGoogle Scholar
  58. 58.
    Blaauwgeers H. G., Vianney de Jong J. M., Verspaget H. W., van den Berg F. M., and Troost D. (1996) Enhanced superoxide dismutase-2 immunoreactivity of astrocytes and occasional neurons in amyotrophic lateral sclerosis. J. Neurol. Sci. 140, 21–29.PubMedCrossRefGoogle Scholar
  59. 59.
    Liu Y., Brooks B. R., Taniguchi N., and Hartmann H. A. (1998) CuZnSOD and MnSOD immunoreactivity in brain stem motor neurons from amyotrophic lateral sclerosis patients. Acta. Neurophathol. (Berl.) 95, 63–70.CrossRefGoogle Scholar
  60. 60.
    McEachern G., Kassovska-Bratinova S., Raha S., et al. (2000) Manganese superoxide dismutase levels are elevated in a proportion of amyotrophic lateral sclerosis patient cell lines. Biochem. Biophys. Res. Commun. 273, 359–363.PubMedCrossRefGoogle Scholar
  61. 61.
    Radunovic A., Porto W. G., Zeman S., and Leigh P. N. (1997) Increased mitochondrial superoxide dismutase activity in Parkinson's disease but not amyotrophic lateral sclerosis motor cortex. Neurosci. Lett. 239, 105–108.PubMedCrossRefGoogle Scholar
  62. 62.
    Paradies G., Petrosillo G., Pistolese M., and Ruggiero F. M. (2000) The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles. FEBS Lett. 466, 323–326.PubMedCrossRefGoogle Scholar
  63. 63.
    Crapo J. D., Oury T., Rabouille C., Slot J. W., and Chang L. Y. (1992) Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc. Natl. Acad. Sci. USA 89, 10,405–10,409.CrossRefGoogle Scholar
  64. 64.
    Kira Y., Sato E. F., and Inoue M. (2002) Association of Cu, Zn-type superoxide dismutase with mitochondria and peroxisomes. Arch. Biochem. Biophys. 399, 96–102.PubMedCrossRefGoogle Scholar
  65. 65.
    Fridovich I. (1997) Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J. Biol. Chem. 272, 18,515–18,517.CrossRefGoogle Scholar
  66. 66.
    Valentine J. S., Doucette P. A., and Potter S. Z. (2004) Copper-Zinc Superoxide Dismutase and Amyotrophic Lateral Sclerosis. Annu. Rev. Biochem. 74, 563–593.CrossRefGoogle Scholar
  67. 67.
    Weisiger R. A., and Fridovich I. (1973) Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. J. Biol. Chem. 248, 4793–4796.PubMedGoogle Scholar
  68. 68.
    Tyler D. D. (1975) Polarographic assay and intracellular distribution of superoxide dismutase in rat liver. Biochem. J. 147, 493–504.PubMedGoogle Scholar
  69. 69.
    Okado-Matsumoto A. and Fridovich I. (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J. Biol. Chem. 276, 38,388–38,393.CrossRefGoogle Scholar
  70. 70.
    Geller B. L. and Winge D. R. (1982) Rat liver Cu,Zn-superoxide dismutase. Subcellular location in lysosomes. J. Biol. Chem. 257, 8945–8952.PubMedGoogle Scholar
  71. 71.
    Higgins C. M., Jung C., Ding H., and Xu Z. (2002) Mutant Cu, Zn superoxide dismutase that causes motoneuron degeneration is present in mitochondria in the CNS. J. Neurosci. 22, RC215.PubMedGoogle Scholar
  72. 72.
    Sturtz L. A., Diekert K., Jensen L. T., Lill R., and Culotta V. C. (2001) A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J. Biol. Chem. 276, 38,084–38,089.Google Scholar
  73. 73.
    Vijayvergiya C., Beal M. F., Buck J., and Manfredi G. (2005) Mutant superoxide dismutase 1 forms aggregates in the brain mitochondrial matrix of amyotrophic lateral sclerosis mice. J. Neurosci. 25, 2463–2470.PubMedCrossRefGoogle Scholar
  74. 74.
    Liu J., Lillo C., Jonsson P. A., et al. (2004) Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron 43, 5–17.PubMedCrossRefGoogle Scholar
  75. 75.
    Pasinelli P., Belford M. E., Lennon N., et al. (2004) Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 43, 19–30.PubMedCrossRefGoogle Scholar
  76. 76.
    Bruijn L. I., Houseweart M. K., Kato S., et al. (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281, 1851–1854.PubMedCrossRefGoogle Scholar
  77. 77.
    Schwartz A. L. and Ciechanover A. (1999) The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annu. Rev. Med. 50, 57–74.PubMedCrossRefGoogle Scholar
  78. 78.
    Leigh P. N., Whitwell H., Garofalo O., et al. (1991) Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. Brain 114 (Pt. 2), 775–788.PubMedCrossRefGoogle Scholar
  79. 79.
    Durham H. D., Roy J., Dong L., and Figlewicz D. A. (1997) Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J. Neuropathol. Exp. Neurol. 56, 523–530.PubMedGoogle Scholar
  80. 80.
    Dal Canto M. C. and Gurney M. E. (1997) A low expressor line of transgenic mice carrying a mutant human Cu,Zn superoxide dismutase (SOD1) gene develops pathological changes that most closely resemble those in human amyotrophic lateral sclerosis. Acta. Neuropathol. (Berl.) 93, 537–550.CrossRefGoogle Scholar
  81. 81.
    Jonsson P. A., Ernhill K., Andersen P. M., et al. (2004) Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lateral sclerosis. Brain 127, 73–88.PubMedCrossRefGoogle Scholar
  82. 82.
    Johnston J. A., Dalton M. J., Gurney M. E., and Kopito R. R. (2000) Formation of high molecular weight complexes of mutant Cu,Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 97, 12,571–12,576.CrossRefGoogle Scholar
  83. 83.
    Sasaki S., Warita H., Murakami T., et al. (2004) Ultrastructural study of aggregates in the spinal cord of transgenic mice with a G93A mutant SOD1 gene. Acta. Neuropathol. (Berl.) 109, 247–255.CrossRefGoogle Scholar
  84. 84.
    Tobisawa S., Hozumi Y., Arawaka S., et al. (2003) Mutant SOD1 linked to familial amyotrophic lateral sclerosis, but not wild-type SOD1, induces ER stress in COS7 cells and transgenic mice. Biochem. Biophys. Res. Commun. 303, 496–503.PubMedCrossRefGoogle Scholar
  85. 85.
    Hartl F. U. (1996) Molecular chaperones in cellular protein folding. Nature 381, 571–579.PubMedCrossRefGoogle Scholar
  86. 86.
    Ohtsuka K. and Suzuki T. (2000) Roles of molecular chaperones in the nervous system. Brain Res. Bull. 53, 141–146.PubMedCrossRefGoogle Scholar
  87. 87.
    Bruening W., Roy J., Giasson B., Figlewicz D. A., Mushynski W. E., and Durham H. D. (1999) Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J. Neurochem. 72, 693–699.PubMedCrossRefGoogle Scholar
  88. 88.
    Takeuchi H., Kobayashi Y., Yoshihara T., et al. (2002) Hsp70 and Hsp40 improve neurite out-growth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1. Brain Res. 949, 11–22.PubMedCrossRefGoogle Scholar
  89. 89.
    Maatkamp A., Vlug A., Haasdijk E., Troost D., French P. J., and Jaarsma D. (2004) Decrease of Hsp25 protein expression precedes degeneration of motoneurons in ALS-SOD1 mice. Eur. J. Neurosci. 20, 14–28.PubMedCrossRefGoogle Scholar
  90. 90.
    Tummala H., Jung C., Tiwari A., Higgins C. M., Hayward L. J., and Xu Z. (2005) Inhibition of chaperone activity is a shared property of several Cu, Zn superoxide dismutase mutants that cause amyotrophic lateral sclerosis. J. Biol. Chem. 280, 17,725–17,731.Google Scholar
  91. 91.
    Neupert W. and Brunner M. (2002) The protein import motor of mitochondria. Nat. Rev. Mol. Cell. Biol. 3, 555–565.PubMedCrossRefGoogle Scholar
  92. 92.
    Okado-Matsumoto A. and Fridovich I. (2002) Amyotrophic lateral sclerosis: a proposed mechanism. Proc. Natl. Acad. Sci. USA 99, 9010–9014.PubMedGoogle Scholar
  93. 93.
    Takeuchi H., Kobayashi Y., Ishigaki S., Doyu M., and Sobue G. (2002) Mitochondrial localization of mutant superoxide dismutase 1 triggers caspase-dependent cell death in a cellular model of familial amyotrophic lateral sclerosis. J. Biol. Chem. 277, 50,966–50,972.Google Scholar
  94. 94.
    Guegan C., Vila M., Rosoklija G., Hays A. P., and Przedborski S. (2001) Recruitment of the mitochondrial-dependent apoptotic pathway in amyotrophic lateral sclerosis. J. Neurosci. 21, 6569–6576.PubMedGoogle Scholar
  95. 95.
    Martin L. J. (1999) Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J. Neuropathol. Exp. Neurol. 58, 459–471.PubMedGoogle Scholar
  96. 96.
    Vukosavic S., Dubois-Dauphin M., Romero N., and Przedborski S. (1999) Bax and Bcl-2 interaction in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem. 73, 2460–2468.PubMedCrossRefGoogle Scholar
  97. 97.
    Vukosavic S., Stefanis L., Jackson-Lewis V., et al. (2000) Delaying caspase activation by Bcl-2: A clue to disease retardation in a transgenic mouse model of amyotrophic lateral sclerosis. J. Neurosci. 20, 9119–9125.PubMedGoogle Scholar
  98. 98.
    Inoue H., Tsukita K., Iwasato T., et al. (2003) The crucial role of caspase-9 in the disease progression of a transgenic ALS mouse model. EMBO J. 22, 6665–6674.PubMedCrossRefGoogle Scholar
  99. 99.
    Cassina A. M., Hodara R., Souza J. M., et al. (2000) Cytochrome c nitration by peroxynitrite. J. Biol. Chem. 275, 21,409–21,415.CrossRefGoogle Scholar
  100. 100.
    Hoch F. L. (1992) Cardiolipins and biomembrane function. Biochim. Biophys. Acta. 1113, 71–133.PubMedGoogle Scholar
  101. 101.
    Shidoji Y., Hayashi K., Komura S., Ohishi N., and Yagi K. (1999) Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Biochem. Biophys. Res. Commun. 264, 343–347.PubMedCrossRefGoogle Scholar
  102. 102.
    Nomura K., Imai H., Koumura T., Kobayashi T., and Nakagawa Y. (2000) Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem. J. 351, 183–193.PubMedCrossRefGoogle Scholar
  103. 103.
    Kirkland R. A., Adibhatla R. M., Hatcher J. F., and Franklin J. L. (2002) Loss of cardiolipin and mitochondria during programmed neuronal death: evidence of a role for lipid peroxidation and autophagy. Neuroscience 115, 587–602.PubMedCrossRefGoogle Scholar
  104. 104.
    Iverson S. L. and Orrenius S. (2004) The cardiolipin-cytochrome c interaction and the mitochondrial regulation of apoptosis. Arch. Biochem. Biophys. 423, 37–46.PubMedCrossRefGoogle Scholar
  105. 105.
    Nakagawa Y. (2004) Initiation of apoptotic signal by the peroxidation of cardiolipin of mitochondria. Ann. NY Acad. Sci. 1011, 177–184.PubMedCrossRefGoogle Scholar
  106. 106.
    Perry T. L., Hansen S., and Jones K. (1987) Brain glutamate deficiency in amyotrophic lateral sclerosis. Neurology 37, 1845–1848.PubMedGoogle Scholar
  107. 107.
    Tsai G. C., Stauch-Slusher B., Sim L., et al. (1991) Reductions in acidic amino acids and N-acetylaspartylglutamate in amyotrophic lateral sclerosis CNS. Brain Res. 556, 151–156.PubMedCrossRefGoogle Scholar
  108. 108.
    Rothstein J. D., Tsai G., Kuncl R. W., et al. (1990) Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann. Neurol. 28, 18–25.PubMedCrossRefGoogle Scholar
  109. 109.
    Shaw P. J., R. M. Chinnery, and P. G. Ince. (1994) Non-NMDA receptors in motor neuron disease (MND): a quantitative autoradiographic study in spinal cord and motor cortex using [3H]CNQX and [3H]kainate. Brain Res. 655, 186–194.PubMedCrossRefGoogle Scholar
  110. 110.
    Rothstein J. D., Van Kammen M., Levey A. I., Martin L. J., and Kuncl R. W. (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 38, 73–84.PubMedCrossRefGoogle Scholar
  111. 111.
    Bruijn L. I., Becher M. W., Lee M. K., et al. (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18, 327–338.PubMedCrossRefGoogle Scholar
  112. 112.
    Guo Z., Kindy M. S., Kruman I., and Mattson M. P. (2000) ALS-linked Cu/Zn-SOD mutation impairs cerebral synaptic glucose and giutamate transport and exacerbates ischemic brain injury. J. Cereb. Blood Flow Metab. 20, 463–468.PubMedCrossRefGoogle Scholar
  113. 113.
    Lin C. L., Bristol L. A., Jin L., et al. (1998) Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 20, 589–602.PubMedCrossRefGoogle Scholar
  114. 114.
    Meyer T., Fromm A., Munch C., et al. (1999) The RNA of the glutamate transporter EAA12 is variably spliced in amyotrophic lateral sclerosis and normal individuals. J. Neurol. Sci. 170, 45–50.PubMedCrossRefGoogle Scholar
  115. 115.
    Honig L. S., Chambliss D. D., Bigio E. H., Carroll S. L., and Elliott J. L. (2000) Glutamate transporter EAAT2 splice variants occur not only in ALS, but also in AD and controls. Neurology 55, 1082–1088.PubMedGoogle Scholar
  116. 116.
    Health P. R. and Shaw P. J. (2002) Update on the glutamatergic neurotransmitter system and the role of exicitoxicity in amyotrophic lateral sclerosis. Muscle Nerve 26, 438–458.CrossRefGoogle Scholar
  117. 117.
    Howland D. S., Liu J., She Y., t al. (2002) Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc. Natl. Acad. Sci. USA 99, 1604–1609.PubMedCrossRefGoogle Scholar
  118. 118.
    Kruman I. I., Pedersen W. A., Springer J. E., and Mattson M. P. (1999b). ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Exp. Neurol. 160, 28–39.PubMedCrossRefGoogle Scholar
  119. 119.
    Hollmann M. and Heinemann S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.PubMedCrossRefGoogle Scholar
  120. 120.
    Kawahara Y., Ito K., Sun H., Aizawa H., Kanazawa I., and Kwak S. (2004) Glutamate receptors: RNA editing and death of motor neurons. Nature 427, 801.PubMedCrossRefGoogle Scholar
  121. 121.
    Tateno M., Sadakata H., Tanaka M., et al. (2004) Calcium-permeable AMPA receptors promote misfolding of mutant SOD1 protein and development of amyotrophic lateral sclerosis in a transgenic mouse model. Hum. Mol. Genet. 13, 2183–2196.PubMedCrossRefGoogle Scholar
  122. 122.
    Ince P., Stout N., Shaw P., et al. (1993) Parval-bumin and calbindin D-28k in the human motor sytem and in motor neuron disease. Neuropathol. Appl. Neurobiol. 19, 291–299.PubMedGoogle Scholar
  123. 123.
    Carri M. T., Ferri A., Battistoni A., et al. (1997) Expression of a Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Lett. 414, 365–368.PubMedCrossRefGoogle Scholar
  124. 124.
    Siklos L., Engelhardt J, Harati, Y., Smith R. G., Joo F., and Appel S. H. (1996) Ultrastrutural evidence for altered calcium in motor nerve terminals in amyotropic lateral sclerosis. Ann. Neurol. 39, 203–216.PubMedCrossRefGoogle Scholar
  125. 125.
    David G., Barrett J. N., and Barrett E. F. (1998) Evidence that mitochondria buffer physiological Ca2+ loads in lizard motor nerve terminals. J. Physiol. 509 (Pt 1), 59–65.PubMedCrossRefGoogle Scholar
  126. 126.
    Vila L., Barrett E. F., and Barrett J. N (2003) Stimulation-induced mitochondrial [Ca2+] elevations in mouse motor terminals: comparison of wild-type with SOD1-G93A. J. Physiol. 549, 719–728.PubMedCrossRefGoogle Scholar
  127. 127.
    Julien J. P. and Beaulieu J. M. (2000) Cytoskeletal abnormalities in amyotrophic lateral sclerosis: beneficial or detrimental effects? J. Neurol. Sci. 180, 7–14.PubMedCrossRefGoogle Scholar
  128. 128.
    Kanekura K., Hashimoto Y., Niikura T., Aiso S., Matsuoka M., and Nishimoto I. (2004) Alsin, the product ALS2 gene, suppresses SOD1 mutant neurotoxicity through RhoGEF domain by interacting with SOD1 mutants. J. Biol. Chem. 279, 19,247–19,256.CrossRefGoogle Scholar
  129. 129.
    Yang Y. Hentati A., Deng H. X., et al. (2001) The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat. Genet. 29, 160–165.PubMedCrossRefGoogle Scholar
  130. 130.
    Julien J. P., Millecamps S., and Kriz J. (2005) Cytoskeletal defects in amyotrophic lateral sclerosis (motor neuron disease). Novartis Found Sympt. 264, 183–192; discussion 192–196, 227–230.CrossRefGoogle Scholar
  131. 131.
    Takamiya R., Takahashi M., Park Y. S., et al. (2005) Overexpression of mutated Cu, Zn-SOD in neuroblastoma cells results in cytoskeletal change. Am. J. Physiol. Cell Physiol. 288, C253-C259.PubMedCrossRefGoogle Scholar
  132. 132.
    Kriz J., Meier J., Julien J. P., and Padjen A. L. (2000) Altered ionic conductances in axons of transgenic mouse expressing the human neurofilament heavy gene: A mouse model of amyotrophic lateral sclerosis. Exp. Neurol. 163, 414–421.PubMedCrossRefGoogle Scholar
  133. 133.
    Wong N. K., He B. P., and Strong M. J. (2000) Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J. Neuropathol. Exp. Neurol. 59, 972–982.PubMedGoogle Scholar
  134. 134.
    Zhang B., Tu P., Abtahian F., Trojanowski J. Q., and Lee V. M. (1997) Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J. Cell Biol. 139, 1307–1315.PubMedCrossRefGoogle Scholar
  135. 135.
    Morris R. L. and Hollenbeck P. J. (1995) Axonal transport of mitochondrial along microtubules and F-actin in living vertebrate neurons. J. Cell Biol. 131, 1315–1326.PubMedCrossRefGoogle Scholar
  136. 136.
    Sasaki S., and Iwata M. (1996) Impariment of fast axonal transport in the proximal axons of anterior horn neurons in amyotrophic lateral sclerosis. Neurology 47, 535–540.PubMedGoogle Scholar
  137. 137.
    Santel A. and Fuller M. T. (2001) Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114, 867–874.PubMedGoogle Scholar
  138. 138.
    Legros E., Lombes A., Frachon P., and Rojo M. (2002) Mitchondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol. Biol. Cell 13, 4343–4354.PubMedCrossRefGoogle Scholar
  139. 139.
    Zuchner S., Mersiyanva I. V., Muglia M., et al. (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36, 449–451.PubMedCrossRefGoogle Scholar
  140. 140.
    Bradbury J. (2004) Mitochondrial fusion protein mutted in CMT2A. Lancet Neurol. 3, 326.PubMedCrossRefGoogle Scholar
  141. 141.
    Kijima K., Numakura C., Izumino H., et al., (2005) Mitochondrial GTPase mitofusin 2 mutation in Charcot-Marie-Tooth neuropathy type 2A. Hum. Genet. 116, 23–27.PubMedCrossRefGoogle Scholar
  142. 142.
    Pich S., Bach D., Briones P., et al. (2005) The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum. Mol. Genet. 14, 1405–1415.PubMedCrossRefGoogle Scholar
  143. 143.
    Beal M. F. (2002) Coenzyme Q10 as a possible treatment for neurodegenerative diseases. Free Radic. Res. 36, 455–460.PubMedCrossRefGoogle Scholar
  144. 144.
    Zhu S., Stavrovskaya I. G., Drozda M., et al. (2002) Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 417, 74–78.PubMedCrossRefGoogle Scholar
  145. 145.
    Li M., Ona V. O., Guegan C., et al. (2000) Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288, 335–339.PubMedCrossRefGoogle Scholar
  146. 146.
    Klivenyi P., Ferrante R. J., Matthews R. T., et al. (1999) Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat. Med. 5, 347–350.PubMedCrossRefGoogle Scholar
  147. 147.
    Beretta S., Sala G., Mattavelli L., et al. (2003) Mitochondrial dysfunction due to mutant copper/zinc superoxide dismutase associated with amyotrophic lateral sclerosis is reversed by N-acetylcysteine. Neurobiol. Dis. 13, 213–221.PubMedCrossRefGoogle Scholar
  148. 148.
    Pattee G. L., Post G. R., Gerber R. E., and Bennett J. P. Jr. (2003) Reduction of oxidative stress in amyotrophic lateral sclerosis following pramipexole treatment. Amotroph. Lateral Scler. Other Motor Neuron Disord. 4, 90–95.CrossRefGoogle Scholar
  149. 149.
    Drachman D. B., Frank K., Dykes-Hoberg M., et al. (2002) Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann. Neurol. 52, 771–778.PubMedCrossRefGoogle Scholar
  150. 150.
    Liu R., Li B., Flanagan S. W., Oberley L. W., Gozal D., and Qiu M. (2002) Increased mitochondrial antioxidative activity or decreased oxygen free radical propagation prevent mutant SOD1-mediated motor neuron cell death and increase amyotrophic lateral sclerosis-like transgenic mouse survival. J. Neurochem. 80, 488–500.PubMedCrossRefGoogle Scholar
  151. 151.
    Zheng C., Nennsmo I., Fadeel B., and Henter J. I. (2004) Vascular endothelial growth factor prolongs survival in a transgeic mouse model of ALS. Ann. Neurol. 56, 564–567.PubMedCrossRefGoogle Scholar
  152. 152.
    Li B., Xu W., Luo C., Gozal D., and Liu R. (2003) VEGF-induced activation of the P13-K/Akt pathway reduces mutant SOD1-mediated motor neuron cell death. Brain Res. Mol. Brain Res. 111, 155–164.PubMedCrossRefGoogle Scholar
  153. 153.
    Ellis A. C., and Rosenfeld J. (2004) The role of creatine in the management of amyotrophic lateral sclerosis and other neurodegenerative disorders. CNS Drugs 18, 967–980.PubMedCrossRefGoogle Scholar
  154. 154.
    Andreassen Q. A., Jenkins B. G., Dedeoglu A. et al. (2001) Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation. J. Neurochem. 77, 383–990.PubMedCrossRefGoogle Scholar
  155. 155.
    Zhang W., Narayanan M., and Friedlander R. M (2003) Additive neuroprotective effects of minocycline with creatine in a mouse model of ALS. Ann. Neurol. 53, 267–270.PubMedCrossRefGoogle Scholar
  156. 156.
    Drory V. E. and Gross D (2000) No effect of creatine on respiratory distress in amytrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 3, 43–46.CrossRefGoogle Scholar
  157. 157.
    Derave W., Van Den Bosch L., Lemmens G., Eijnde B. O., Robberecht W., and Hespel P. (2003) Skeletal muscle properties in a transgenic mouse model for amyotrophic lateral sclerosis: effects of creatine treatment. Neurobiol. Dis. 13, 264–272.PubMedCrossRefGoogle Scholar
  158. 158.
    Shefner J. M., Cudkowicz M. E., Schoenfeld D., et al. (2004) A clinical trial of creatine in ALS. Neurology 63, 1656–1661.PubMedGoogle Scholar
  159. 159.
    Keep M., Elmer E., Fong K. S., and Csiszar K. (2001) Intrathecal cyclosporin prolongs survival of late-stage ALS mice. Brain Res. 894, 327–331.PubMedCrossRefGoogle Scholar
  160. 160.
    Kirkinezos I. G., Hernandez D., Bradley W. G., and Moraes C. T. (2004) An ALS mouse model with a permeable blood-brain barrier benefits from systemic cyclosporine A treatment. J. Neurochem. 88, 821–826.PubMedCrossRefGoogle Scholar
  161. 161.
    Jacobs H. T. (2003) The mitochondrial theory of aging: dead or alive? Aging Cell 2, 11–17.PubMedCrossRefGoogle Scholar
  162. 162.
    Beal M. F. (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38, 357–366.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Sandra R. Bacman
    • 1
  • Walter G. Bradley
    • 1
    • 3
  • Carlos T. Moraes
    • 1
    • 2
    • 3
  1. 1.Department of NeurologyUniversity of Miami, Miller School of MedicineMiami
  2. 2.Department of Cell Biology and AnatomyUniversity of Miami, Miller School of MedicineMiami
  3. 3.Department of The Neuroscience ProgramUniversity of Miami, Miller School of MedicineMiami

Personalised recommendations