Molecular Neurobiology

, Volume 32, Issue 2, pp 173–202 | Cite as

Mood stabilizers target cellular plasticity and resilience cascades

Implications for the development of novel therapeutics
  • Rosilla F. Bachmann
  • Robert J. Schloesser
  • Todd D. Gould
  • Husseini K. Manji


Bipolar disorder is a devastating disease with a lifetime incidence of about 1% in the general population. Suicide is the cause of death in 10 to 15% of patients and in addition to suicide, mood disorders are associated with many other harmful health effects. Mood stabilizers are medications used to treat bipolar disorder. In addition to their therapeutic effects for the treatment of acute manic episodes, mood stabilizers are useful as prophylaxis against future episodes and as adjunctive antidepressant medications. The most established and investigated mood-stabilizing drugs are lithium and valproate but other anticonvulsants (such as carbamazepine and lamotrigine) and antipsychotics are also considered as mood stabilizers. Despite the efficacy of these diverse medications, their mechanisms of action remain, to a great extent, unknown. Lithium’s inhibition of some enzymes, such as inositol monophosphatase and gycogen synthase kinase-3, probably results in its mood-stabilizing effects. Valproate may share its anticonvulsant target with its mood-stabilizing target or may act through other mechanisms. It has been shown that lithium, valproate, and/or carbamazepine regulate numerous factors involved in cell survival pathways, including cyclic adenine monophospate response element-binding protein, brain-derived neurotrophic factor, bcl-2, and mitogen-activated protein kinases. These drugs have been suggested to have neurotrophic and neuroprotective properties that ameliorate impairments of cellular plasticity and resilience underlying the pathophysiology of mood disorders. This article also discusses approaches to develop novel treatments specifically for bipolar disorder.

Index Entries

Mania depression manic-depressive illness lithium valproate neurotrophic factors pharmacology bcl-2 neuroplasticity mitochondria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tohen M., Hennen J., Zarate C. M. Jr., et al. (2000) Two-year syndromal and functional recovery in 219 cases of first-episode major affective disorder with psychotic features. Am. J. Psychiatry 157, 220–228.PubMedCrossRefGoogle Scholar
  2. 2.
    Benazzi F. (2001) Prevalence and clinical correlates of residual depressive symptoms in bipolar II disorder. Psychother. Psychosom. 70, 232–238.PubMedCrossRefGoogle Scholar
  3. 3.
    Keitner G. I., Solomon D. A., Ryan C. E., et al. (1996) Prodromal and residual symptoms in bipolar I disorder. Compr. Psychiatry 37, 362–367.PubMedCrossRefGoogle Scholar
  4. 4.
    Gitlin M. J., Swendsen J., Heller T. L., and Hammen C. (1995) Relapse and impairment in bipolar disorder. Am. J. Psychiatry 152, 1635–1640.PubMedGoogle Scholar
  5. 5.
    Zarate C. A. Jr., Tohen M., Land M., and Cavanagh S. (2000) Functional impairment and cognition in bipolar disorder. Psychiatr. Q. 71, 309–329.PubMedCrossRefGoogle Scholar
  6. 6.
    MacQueen G. M., Young L. T., and Joffe R. T. (2001) A review of psychosocial outcome in patients with bipolar disorder. Acta. Psychiatr. Scand. 103, 163–170.PubMedCrossRefGoogle Scholar
  7. 7.
    Murray C. J. and Lopez A. D. (1997) Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 349, 1498–1504.PubMedCrossRefGoogle Scholar
  8. 8.
    Musselman D. L., Evans D. L., and Nemeroff C. B. (1998) The relationship of depression to cardiovascular disease: epidemiology, biology, and treatment. Arch. Gen. Psychiatry 55, 580–592.PubMedCrossRefGoogle Scholar
  9. 9.
    Michelson D., Stratakis C., Hill L., et al. (1996) Bone mineral density in women with depression. N. Engl. J. Med. 335, 1176–1181.PubMedCrossRefGoogle Scholar
  10. 10.
    Ciechanowski P. S., Katon W. J., and Russo J. E. (2000) Depression and diabetes: impact of depressive symptoms on adherence, function, and costs. Arch. Intern. Med. 160, 3278–3285.PubMedCrossRefGoogle Scholar
  11. 11.
    Gould T. D. and Manji H. K. (2002) Signaling networks in the pathophysiology and treatment of mood disorders. J. Psychosom. Res. 53, 687–697.PubMedCrossRefGoogle Scholar
  12. 12.
    Manji H. K., Bebchuk J. M., Moore G. J., Glitz D., Hasanat K. A., and Chen G. (1999) Modulation of CNS signal transduction pathways and gene expression by mood-stabilizing agents: therapeutic implications. J. Clin. Psychiatry 60, 27–39; discussion 40–21, 113–116.PubMedGoogle Scholar
  13. 13.
    Manji H. K., Chen G., Hsiao J. K., Risby E. D., Masana M. I., and Potter W. Z. (1996) Regulation of signal transduction pathways by mood-stabilizing agents: implications for the delayed onset of therapeutic efficacy. J. Clin. Psychiatry 57, 34–46; discussion 47–38.PubMedGoogle Scholar
  14. 14.
    Chen G., Manji H. K., Hawver D. B., Wright C. B., and Potter W. Z. (1994) Chronic sodium valproate selectively decreases protein kinase C alpha and epsilon in vitro. J. Neurochem. 63, 2361–2364.PubMedCrossRefGoogle Scholar
  15. 15.
    Williams R. S., Cheng L., Mudge A. W., and Harwood A. J. (2002) A common mechanism of action for three mood-stabilizing drugs. Nature 417, 292–295.PubMedCrossRefGoogle Scholar
  16. 16.
    Lenox R. H., McNamara R. K., Watterson J. M., and Watson D. G. (1996) Myristoylated alanine-rich C kinase substrate (MARCKS): a molecular target for the therapeutic action of mood stabilizers in the brain? J. Clin. Psychiatry 57, 23–31; discussion 32–33.PubMedGoogle Scholar
  17. 17.
    Lenox R. H. and Wang L. (2003) Molecular basis of lithium action: integration of lithium-responsive signaling and gene expression networks. Mol. Psychiatry 8, 135–144.PubMedCrossRefGoogle Scholar
  18. 18.
    Coyle J. T. and Duman R. S. (2003) Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 38, 157–160.PubMedCrossRefGoogle Scholar
  19. 19.
    Harwood A. J. and Agam G. (2003) Search for a common mechanism of mood stabilizers. Biochem. Pharmacol. 66, 179–189.PubMedCrossRefGoogle Scholar
  20. 20.
    Post R. M. (2000) Psychopharmacology of mood stabilizers. In: Schizophrenia and Mood Disorders: The New Drug Therapies in Clinical Practice., Buckley P. F. and Waddington J. L., eds. Oxford: Butterworth-Heinemann, pp. 127–154.Google Scholar
  21. 21.
    Ryves W. J. and Harwood A. J. (2001) Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem. Biophys. Res. Commun. 280, 720–725.PubMedCrossRefGoogle Scholar
  22. 22.
    Davies S. P., Reddy H., Caivano M., and Cohen P. (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105.PubMedCrossRefGoogle Scholar
  23. 23.
    Amari L., Layden B., Rong Q., Geraldes C. F., and Mota de Freitas D. (1999) Comparison of fluorescence, (31)P NMR, and (7)Li NMR spectroscopic methods for investigating Li(+)/Mg(2+) competition for biomolecules. Anal. Biochem. 272, 1–7.PubMedCrossRefGoogle Scholar
  24. 24.
    York J. D., Ponder J. W. and Majerus P. W. (1995) Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc. Natl. Acad. Sci. USA 92, 5149–5153.PubMedCrossRefGoogle Scholar
  25. 25.
    Masuda C. A., Xavier M. A., Mattos K. A., Galina A., and Montero-Lomeli M. (2001) Phosphoglucomutase is an in vivo lithium target in yeast. J. Biol. Chem. 10, 10.Google Scholar
  26. 26.
    Kajda P. K. and Birch N. J. (1981) Lithium inhibition of phosphofructokinase. J. Inorg. Biochem. 14, 275–278.PubMedCrossRefGoogle Scholar
  27. 27.
    Klein P. S. and Melton D. A. (1996) A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA 93, 8455–8459.PubMedCrossRefGoogle Scholar
  28. 28.
    Johannessen C. U. (2000) Mechanisms of action of valproate: a commentatory. Neurochem. Int. 37, 103–110.PubMedCrossRefGoogle Scholar
  29. 29.
    van der Laan J. W., de Boer T., and Bruinvels J. (1979) Di-n-propylacetate and GABA degradation. Preferential inhibition of succinic semialdehyde dehydrogenase and indirect inhibition of GABA-transaminase. J. Neurochem. 32, 1769–1780.PubMedCrossRefGoogle Scholar
  30. 30.
    Sawaya M. C., Horton R. W., and Meldrum B. S. (1975) Effects of anticonvulsant drugs on the cerebral enzymes metabolizing GABA. Epilepsia 16, 649–655.PubMedGoogle Scholar
  31. 31.
    Whittle S. R. and Turner A. J. (1978) Effects of the anticonvulsant sodium valproate on gamma-aminobutyrate and aldehyde metabolism in ox brain. J. Neurochem. 31, 1453–1459.PubMedCrossRefGoogle Scholar
  32. 32.
    Anlezark G. M., Horton R. W., Meldrum B. S., Sawaya M. C., and Stephenson J. D. (1976) Proceedings: gamma-aminobutyric acid metabolism and the anticonvulsant action of ethanolamine-o-sulphate and di-n-propylacetate. Br. J. Pharmacol. 56, 383P,384P.Google Scholar
  33. 33.
    Gottlicher M., Minucci S., Zhu P., et al. (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. Embo. J. 20, 6969–6978.PubMedCrossRefGoogle Scholar
  34. 34.
    Tremolizzo L., Carboni G., Ruzicka W. B., et al. (2002) An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc. Natl. Acad. Sci. USA 99, 17,095–17,100.CrossRefGoogle Scholar
  35. 35.
    Yildirim E., Zhang Z., Uz T., Chen C. Q., Manev R., and Manev H. (2003) Valproate administration to mice increases histone acetylation and 5-lipoxygenase content in the hippocampus. Neurosci. Lett. 345, 141–143.PubMedCrossRefGoogle Scholar
  36. 36.
    Gould T. D., Chen G., and Manji H. K. (2003) In Vivo Evidence in the Brain for Lithium Inhibition of Glycogen Synthease Kinase-3. In Neuropsychopharmacology.Google Scholar
  37. 37.
    Bourne H. R. and Nicoll R. (1993) Molecular machines integrate coincident synaptic signals. Cell 72(Suppl), 65–75.PubMedCrossRefGoogle Scholar
  38. 38.
    Bhalla U. S. and Iyengar R. (1999) Emergent properties of networks of biological signaling pathways. Science 283, 381–387.PubMedCrossRefGoogle Scholar
  39. 39.
    Weng G., Bhalla U. S., and Iyengar R. (1999) Complexity in biological signaling systems. Science 284, 92–96.PubMedCrossRefGoogle Scholar
  40. 40.
    Manji H. K. (1992) G proteins: implications for psychiatry. Am. J. Psychiatry 149, 746–760.PubMedGoogle Scholar
  41. 41.
    Szabo S. T., Gould T. D., and Manji H. K. (2003) Introduction to neurotransmitters, receptors, signal transduction, and second messengers. In: Textbook of Psychopharmacology, Nemeroff C., ed. Arlington, VA: American Psychiatric Publishing, pp. 3–52.Google Scholar
  42. 42.
    Rasenick M. M., Chaney K. A., and Chen J. (1996) G protein-mediated signal transduction as a target of antidepressant and antibipolar drug action: evidence from model systems. J. Clin. Psychiatry 57, 49–55; discussion 56–58.PubMedGoogle Scholar
  43. 43.
    Berridge M. J., Downes C. P., and Hanley M. R. (1989) Neural and developmental actions of lithium: a unifying hypothesis. Cell 59, 411–419.PubMedCrossRefGoogle Scholar
  44. 44.
    Allison J. H., Blisner M. E., Holland W. H., Hipps P. P., and Sherman W. R. (1976) Increased brain myo-inositol 1-phosphate in lithium-treated rats. Biochem. Biophys. Res. Commun. 71, 664–670.PubMedCrossRefGoogle Scholar
  45. 45.
    Allison J. H. and Stewart M. A. (1971) Reduced brain inositol in lithium-treated rats. Nat. New Biol. 233, 267,268.PubMedCrossRefGoogle Scholar
  46. 46.
    Hallcher L. M. and Sherman W. R. (1980) The effects of lithium ion and other agents on the activity of myo- inositol-1-phosphatase from bovine brain. J. Biol. Chem. 255, 10,896–10,901.Google Scholar
  47. 47.
    Naccarato W. F., Ray R. E., and Wells W. W. (1974) Biosynthesis of myo-inositol in rat mammary gland. Isolation and properties of the enzymes. Arch. Biochem. Biophys. 164, 194–201.PubMedCrossRefGoogle Scholar
  48. 48.
    Berridge M. J., Downes C. P., and Hanley M. R. (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206, 587–595.PubMedGoogle Scholar
  49. 49.
    Manji H. K. and Lenox R. H. (1999) Ziskind-Somerfeld Research Award. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol. Psychiatry 46, 1328–1351.PubMedCrossRefGoogle Scholar
  50. 50.
    Manji H. K., Bersudsky Y., Chen G., Belmaker R. H., and Potter W. Z. (1996) Modulation of protein kinase C isozymes and substrates by lithium: the role of myo-inositol. Neuropsychopharmacology 15, 370–381.PubMedCrossRefGoogle Scholar
  51. 51.
    Manji H. K., Etcheberrigaray R., Chen G., and Olds J. L. (1993) Lithium decreases membrane-associated protein kinase C in hippocampus: selectivity for the alpha isozyme. J. Neurochem. 61, 2303–2310.PubMedCrossRefGoogle Scholar
  52. 52.
    Leli U. and Hauser G. (1992) Lithium modifies diacylglycerol levels and protein kinase C in neuroblastoma cells. Abstracts of the 8th international conference on second messengers and phosphoproteins, Z187F.Google Scholar
  53. 53.
    Li X. and Jope R. S. (1995) Selective inhibition of the expression of signal transduction proteins by lithium in nerve growth factor-differentiated PC12 cells. J. Neurochem. 65, 2500–2508.PubMedCrossRefGoogle Scholar
  54. 54.
    Lenox R. H., Watson D. G., Patel J., and Ellis J. (1992) Chronic lithium administration alters a prominent PKC substrate in rat hippocampus. Brain. Res. 570, 333–340.PubMedCrossRefGoogle Scholar
  55. 55.
    Watson D. G. and Lenox R. H. (1996) Chronic lithium-induced down-regulation of MARCKS in immortalized hippocampal cells: potentiation by muscarinic receptor activation. J. Neurochem. 67, 767–777.PubMedCrossRefGoogle Scholar
  56. 56.
    Watson D. G., Watterson J. M., and Lenox R. H. (1998) Sodium valproate down-regulates the myristoylated alanine-rich C kinase substrate (MARCKS) in immortalized hippocampal cells: a property of protein kinase C-mediated mood stabilizers. J. Pharmacol. Exp. Ther. 285, 307–316.PubMedGoogle Scholar
  57. 57.
    Fibiger H. C. (1995) Neurobiology of depression: focus on dopamine. Adv. Biochem. Psychopharmacol. 49, 1–17.PubMedGoogle Scholar
  58. 58.
    Goodwin F. K. and Jamison K. R. (1990) Manic-Depressive Illness. New York: Oxford University Press.Google Scholar
  59. 59.
    Einat H., Yuan P., Gould T. D., et al. (2003) The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J. Neurosci. 23, 7311–7316.PubMedGoogle Scholar
  60. 60.
    Nestler E. J., Gould E., Manji H., et al. (2002) Preclinical models: status of basic research in depression. Biol. Psychiatry 52, 503–528.PubMedCrossRefGoogle Scholar
  61. 61.
    Giambalvo C. T. (1992) Protein kinase C and dopamine transport—2. Effects of amphetamine in vitro. Neuropharmacology 31, 1211–1222.PubMedCrossRefGoogle Scholar
  62. 62.
    Gnegy M. E., Hong P., and Ferrell S. T. (1993) Phosphorylation of neuromodulin in rat striatum after acute and repeated, intermittent amphetamine. Brain. Res. Mol. Brain Res. 20, 289–298.PubMedCrossRefGoogle Scholar
  63. 63.
    Iwata S., Hewlett G. H., and Gnegy M. E. (1997) Amphetamine increases the phosphorylation of neuromodulin and synapsin I in rat striatal synaptosomes. Synapse 26, 281–291.PubMedCrossRefGoogle Scholar
  64. 64.
    Iwata S. I., Hewlett G. H., Ferrell S. T., Kantor L., and Gnegy M. E. (1997) Enhanced dopamine release and phosphorylation of synapsin I and neuromodulin in striatal synaptosomes after repeated amphetamine. J. Pharmacol. Exp. Ther. 283, 1445–1452.PubMedGoogle Scholar
  65. 65.
    Birnbaum S. G., Yuan P. X., Wang M., et al. (2004) Protein kinase C overactivity impairs prefrontal cortical regulation of working memory. Science 306, 882–884.PubMedCrossRefGoogle Scholar
  66. 66.
    Moore G. J., Bebchuk J. M., Parrish J. K., et al. (1999) Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am. J. Psychiatry 156, 1902–1908.PubMedGoogle Scholar
  67. 67.
    Hahn C. G. and Friedman E. (1999) Abnormalities in protein kinase C signaling and the pathophysiology of bipolar disorder. Bipolar Disord. 1, 81–86.PubMedCrossRefGoogle Scholar
  68. 68.
    Friedman E., Hoau Yan W., Levinson D., Connell T. A., and Singh H. (1993) Altered platelet protein kinase C activity in bipolar affective disorder, manic episode. Biol. Psychiatry 33, 520–525.PubMedCrossRefGoogle Scholar
  69. 69.
    Wang H. Y. and Friedman E. (1996) Enhanced protein kinase C activity and translocation in bipolar affective disorder brains. Biol. Psychiatry 40, 568–575.PubMedCrossRefGoogle Scholar
  70. 70.
    Kao K. R., Masui Y., and Elinson R. P. (1986) Lithium-induced respecification of pattern in Xenopus-laevis embryos. Nature 322, 371–373.CrossRefPubMedGoogle Scholar
  71. 71.
    He X., Saint-Jeannet J. P., Woodgett J. R., Varmus H. E., and Dawid I. B. (1995) Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374, 617–622.PubMedCrossRefGoogle Scholar
  72. 72.
    Klein P. S. and Melton D. A. (1996) A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA 93, 8455–8459.PubMedCrossRefGoogle Scholar
  73. 73.
    Stambolic C., Ruel L., and Woodgett J. R. (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol. 6, 1664–1668.PubMedCrossRefGoogle Scholar
  74. 74.
    Gurvich N. and Klein P. S. (2002) Lithium and valproic acid: parallels and contrasts in diverse signaling contexts. Pharmacol. Ther. 96, 45–66.PubMedCrossRefGoogle Scholar
  75. 75.
    O’Brien W. T., Harper A. D., Jove F., et al. (2004) Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioral and molecular effects of lithium. J. Neurosci. 24, 6791–6798.PubMedCrossRefGoogle Scholar
  76. 76.
    Phiel C. J., Wilson C. A., Lee V. M., and Klein P. S. (2003) GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature 423, 435–439.PubMedCrossRefGoogle Scholar
  77. 77.
    Chalecka-Franaszek E. and Chuang D. M. (1999) Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc. Natl. Acad. Sci. USA 96, 8745–8750.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang F., Phiel C. J., Spece L., Gurvich N., and Klein P. S. (2003) Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J. Biol. Chem. 278, 33,067–33,077.Google Scholar
  79. 79.
    Kirshenboim N., Plotkin B., Shlomo S. B., Kaidanovich-Beilin O., and Eldar-Finkelman H. (2004) Lithium-mediated phosphorylation of glycogen synthase kinase-3b involves PI3 kinase-dependent activation of protein kinase C-alpha. J. Mol. Neurosci. 24, 237–245.PubMedCrossRefGoogle Scholar
  80. 80.
    Frame S. and Cohen P. (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 359, 1–16.PubMedCrossRefGoogle Scholar
  81. 81.
    Gould T. D., Zarate C. A. J., and Manji H. K. Glycogen synthase kinase-3: a target for novel bipolar disorder treatments. J. Clin. Psychiatry, in press.Google Scholar
  82. 82.
    Woodgett J. R. (2001) Judging a protein by more than its name: gsk-3. STKE 2001, RE12.Google Scholar
  83. 83.
    Gould T. D and Manji H. K. (2002) The wnt signaling pathway in bipolar disorder. Neuroscientist 8, 497–511.PubMedGoogle Scholar
  84. 84.
    Lenox R. H., Gould T. D., and Manji H. K. (2002) Endophenotypes in bipolar disorder. Am. J. Med. Genet. 114, 391–406.PubMedCrossRefGoogle Scholar
  85. 85.
    Jope R. S. and Bijur G. N. (2002) Mood stabilizers, glycogen synthase kinase-3beta and cell survival. Mol. Psychiatry 7(Suppl 1), S35-S45.PubMedCrossRefGoogle Scholar
  86. 86.
    Manji H. K., Moore G. J., and Chen G. (1999) Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biol. Psychiatry 46, 929–940.PubMedCrossRefGoogle Scholar
  87. 87.
    Kaidanovich-Beilin O., Milman A., Weizman A., Pick C. G., and Eldar-Finkelman H. (2004) Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on beta-catenin in mouse hippocampus. Biol. Psychiatry 55, 781–784.PubMedCrossRefGoogle Scholar
  88. 88.
    Gould T. D., Einat H., Bhat R., and Manji H. K. (2004) AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int. J. Neuropsychopharmacol. 1–4.Google Scholar
  89. 89.
    Li X., Zhu W., Roh M. S., Friedman A. B., Rosborough K., and Jope R. S. (2004) In vivo regulation of glycogen synthase kinase-3beta (GSK3beta) by serotonergic activity in mouse brain. Neuropsychopharmacology 29, 1426–1431.PubMedCrossRefGoogle Scholar
  90. 90.
    Beaulieu J. M., Sotnikova T. D., Yao W. D., et al. (2004) Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc. Natl. Acad. Sci. USA 101, 5099–5104.PubMedCrossRefGoogle Scholar
  91. 91.
    Phiel C. J. and Klein P. S. (2001) Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol. 41, 789–813.PubMedCrossRefGoogle Scholar
  92. 92.
    Phiel C. J., Zhang F., Huang E. Y., Guenther M. G., Lazar M. A., and Klein P. S. (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 276, 36,734–36,741.Google Scholar
  93. 93.
    Chen G., Huang L. D., Jiang Y. M., and Manji H. K. (1999) The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J. Neurochem. 72, 1327–1330.PubMedCrossRefGoogle Scholar
  94. 94.
    Hall A. C., Brennan A., Goold R. G., et al. (2002) Valproate Regulates GSK-3-Mediated Axonal Remodeling and Synapsin I Clustering in Developing Neurons. Mol. Cell Neurosci. 20, 257–270.PubMedCrossRefGoogle Scholar
  95. 95.
    Li X., Bijur G. N., and Jope R. S. (2002) Glycogen synthase kinase 3-beta, mood stabilizers, and neuroprotection. Bipolar Disorders 4, 137–144.PubMedCrossRefGoogle Scholar
  96. 96.
    Grimes A. C. and Jope R. S. (2001) CREB DNA binding activity is inhibited by glycogen synthase kinase-3beta and facilitated by lithium. J. Neurochem. 78, 1–15.CrossRefGoogle Scholar
  97. 97.
    Sheline Y. I. (2003) Neuroimaging studies of mood disorder effects on the brain. Biol. Psychiatry 54, 338–352.PubMedCrossRefGoogle Scholar
  98. 98.
    Drevets W. C. (2000) Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog. Brain. Res. 126, 413–431.PubMedCrossRefGoogle Scholar
  99. 99.
    Manji H. K., Drevets W. C., and Charney D. S. (2001) The cellular neurobiology of depression. Nat. Med. 7, 541–547.PubMedCrossRefGoogle Scholar
  100. 100.
    Drevets W. C. (2003) Neuroimaging abnormalities in the amygdala in mood disorders. Ann. N. Y. Acad. Sci. 985, 420–444.PubMedCrossRefGoogle Scholar
  101. 101.
    Manji H. K. and Duman R. S. (2001) Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol. Bull. 35, 5–49.PubMedGoogle Scholar
  102. 102.
    Drevets W. C. (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr. Opin. Neurobiol. 11, 240–249.PubMedCrossRefGoogle Scholar
  103. 103.
    Strakowski S. M., Adler C. M., and DelBello M. P. (2002) tric MRI studies of mood disorders: do they distinguish unipolar and bipolar disorder? Bipolar Disord. 4, 80–88.PubMedCrossRefGoogle Scholar
  104. 104.
    Beyer J. L. and Krishnan K. R. (2002) tric brain imaging findings in mood disorders. Bipolar Disorders 4, 89–104.PubMedCrossRefGoogle Scholar
  105. 105.
    Cotter D., Mackay D., Landau S., Kerwin R., and Everall I. (2001) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch. Gen. Psychiatry 58, 545–553.PubMedCrossRefGoogle Scholar
  106. 106.
    Rajkowska G. (2002) Cell pathology in bipolar disorder. Bipolar Disord 4, 129–116.CrossRefGoogle Scholar
  107. 107.
    Soares J. C. and Mann J. J. (1997) The anatomy of mood disorders—review of structural neuroimaging studies. Biol. Psychiatry 41, 86–106.PubMedCrossRefGoogle Scholar
  108. 108.
    Stoll A. L., Renshaw P. F., Yurgelun-Todd D. A., and Cohen B. M. (2000) Neuroimaging in bipolar disorder: what have we learned? Biol. Psychiatry 48, 505–517.PubMedCrossRefGoogle Scholar
  109. 109.
    Kessler R. C. (1997) The effects of stressful life events on depression. Annu. Rev. Psychol. 48, 191–214.PubMedCrossRefGoogle Scholar
  110. 110.
    McEwen B. S. (1999) Stress and hippocampal plasticity. Annu. Rev. Neurosci. 22, 105–122.PubMedCrossRefGoogle Scholar
  111. 111.
    Lee A. L., Ogle W. O., and Sapolsky R. M. (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disorders 4, 117–128.PubMedCrossRefGoogle Scholar
  112. 112.
    Sapolsky R. M. (2001) Depression, antidepressants, and the shrinking hippocampus. Proc. Natl. Acad. Sci. USA 98, 12,320–12,322.CrossRefGoogle Scholar
  113. 113.
    Sapolsky R. M. (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch. Gen. Psychiatry 57, 925–935.PubMedCrossRefGoogle Scholar
  114. 114.
    Malberg J. E. and Duman R. S. (2003) Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28, 1562–1571.PubMedCrossRefGoogle Scholar
  115. 115.
    Pham K., Nacher J., Hof P. R., and McEwen B. S. (2003) Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur. J. Neurosci. 17, 879–886.PubMedCrossRefGoogle Scholar
  116. 116.
    Gould E., Tanapat P., Rydel T., and Hastings N. (2000) Regulation of hippocampal neurogenesis in adulthood. Biol. Psychiatry 48, 715–720.PubMedCrossRefGoogle Scholar
  117. 117.
    Bhat R. V., Shanley J., Correll M. P., et al. (2000) Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc. Natl. Acad. Sci. USA 97, 11,074–11,079.CrossRefGoogle Scholar
  118. 118.
    Cimarosti H., Rodnight R., Tavares A., et al. (2001) An investigation of the neuroprotective effect of lithium in organotypic slice cultures of rat hippocampus exposed to oxygen and glucose deprivation. Neurosci. Lett. 315, 33–36.PubMedCrossRefGoogle Scholar
  119. 119.
    D’Mello S. R., Anelli R., and Calissano P. (1994) Lithium induces apoptosis in immature cerebellar granule cells but promotes survival of mature neurons. Exp. Cell. Res. 211, 332–338.PubMedCrossRefGoogle Scholar
  120. 120.
    Khodorov B., Pinelis V., Vinskaya N., Sorokina E., Grigortsevich N., and Storozhevykh T. (1999) Li+ protects nerve cells against destabilization of Ca2+ homeostasis and delayed death caused by removal of external Na+. FEBS Lett. 448, 173–176.PubMedCrossRefGoogle Scholar
  121. 121.
    Nonaka S., Hough C. J., and Chuang D. M. (1998) Chronic lithium treatment robustyl protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx. Proc. Natl. Acad. Sci. USA 95, 2642–2647.PubMedCrossRefGoogle Scholar
  122. 122.
    Hashimoto R., Hough C., Nakazawa T., Yamamoto T., and Chuang D. M. (2002) Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J. Neurochem. 80, 589–597.PubMedCrossRefGoogle Scholar
  123. 123.
    Kanai H., Chalecka-Franaszek E., Chen R. W., Hashimoto R., Hiroi T., and Chuang D. M. (2001) Valproic acid protects against glutamate-induced excitotoxicity in mature cerebellar granule cells. Society for Neuroscience Annual Meeting Abstract 94.18.Google Scholar
  124. 124.
    Chen R. W. and Chuang D. M. (1999) Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J. Biol. Chem. 274, 6039–6042.PubMedCrossRefGoogle Scholar
  125. 125.
    Centeno F., Mora A., Fuentes J. M., Soler G., and Claro E. (1998) Partial lithium-associated protection against apoptosis induced by C2-ceramide in cerebellar granule neurons. Neuroreport 9, 4199–4203.PubMedCrossRefGoogle Scholar
  126. 126.
    Nonaka S., Katsube N., and Chuang D. M. (1998) Lithium protects rat cerebellar granule cells against apoptosis induced by anticonvulsants, phenytoin and carbamazepine. J. Pharmacol. Exp. Ther. 286, 539–547.PubMedGoogle Scholar
  127. 127.
    Jeong M. R., Hashimoto R., Senatorov V. V., et al. (2003) Valproic acid, a mood stabilizer and anticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition. FEBS Lett. 542, 74–78.PubMedCrossRefGoogle Scholar
  128. 128.
    Alvarez G., Munoz-Montano J. R., Satrustegui J., Avila J., Bogonez E., and Diaz-Nido J. (1999) Lithium protects cultured neurons against beta-amyloid-induced neurodegeneration. FEBS Lett. 453, 260–264.PubMedCrossRefGoogle Scholar
  129. 129.
    Chuang D. M., Chen R., Chalecka-Franaszek E., et al. (2002) Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disorders 4, 129–136.PubMedCrossRefGoogle Scholar
  130. 130.
    Chen G., Zeng W. Z., Yuan P. X., et al. (1999) The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J. Neurochem. 72, 879–882.PubMedCrossRefGoogle Scholar
  131. 131.
    Nonaka S. and Chuang D. M. (1998) Neuroprotective effects of chronic lithium on focal cerebral ischemia in rats. Neuroreport 9, 2081–2084.PubMedCrossRefGoogle Scholar
  132. 132.
    Ren M., Senatorov V. V., Chen R. W., and Chuang D. M. (2003) Postinsult treatment with lithium reduces brain damage and facilitates neurological recovery in a rat ischemia/reperfusion model. Proc. Natl. Acad. Sci. USA 100, 6210–6215.PubMedCrossRefGoogle Scholar
  133. 133.
    Ren M., Leng Y., Jeong M. R., Leeds P., and Chuang D. M. (2004) Valproaic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J. Neurochem. 89, 1358–1367.PubMedCrossRefGoogle Scholar
  134. 134.
    Wei H., Qin Z. H., Senatorov V. V., et al. (2001) Lithium suppresses excitotoxicity-induced striatal lesions in a rat model of Huntington’s disease. Neuroscience 106, 603–612.PubMedCrossRefGoogle Scholar
  135. 135.
    Cameron H. A., Hazel T. G., and McKay R. D. (1998) Regulation of neurogenesis by growth factors and neurotransmitters. J. Neurobiol. 36, 287–306.PubMedCrossRefGoogle Scholar
  136. 136.
    Gage F. H. (2000) Mammalian neural stem cells. Science 287, 1433–1438.PubMedCrossRefGoogle Scholar
  137. 137.
    Jacobs B. L. (2002) Adult brain neurogenesis and depression. Brain. Behav. Immun. 16, 602–609.PubMedCrossRefGoogle Scholar
  138. 138.
    Jacobs B. L., Praag H., and Gage F. H. (2000) Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol. Psychiatry 5, 262–269.PubMedCrossRefGoogle Scholar
  139. 139.
    Magavi S. S. and Macklis J. D. (2001) Manipulation of neural precursors in situ: induction of neurogenesis in the neocortex of adult mice. Neuropsychopharmacology 25, 816–835.PubMedCrossRefGoogle Scholar
  140. 140.
    Duman R. S., Nakagawa S., and Malberg J. (2001) Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology 25, 836–844.PubMedCrossRefGoogle Scholar
  141. 141.
    Malberg J. E., Eisch A. J., Nestler E. J., and Duman R. S. (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20, 9104–9110.PubMedGoogle Scholar
  142. 142.
    Manev H., Uz T., Smalheiser N. R., and Manev R. (2001) Antidepressants alter cell proliferation in the adult brain in vivo and in neural cultures in vitro. Eur. J. Pharmacol. 411, 67–70.PubMedCrossRefGoogle Scholar
  143. 143.
    Santarelli L., Saxe M., Gross C., et al. (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809.PubMedCrossRefGoogle Scholar
  144. 144.
    Hashimoto R., Senatorov V., Kanai H., Leeds P., and Chuang D. M. (2003) Lithium stimulates progenitor proliferation in cultured brain neurons. Neuroscience 117, 55–61.PubMedCrossRefGoogle Scholar
  145. 145.
    Chen G., Rajkowska G., Du F., Seraji-Bozorgzad N., and Manji H. K. (2000) Enhancement of hippocampal neurogenesis by lithium. J. Neurochem. 75, 1729–1734.PubMedCrossRefGoogle Scholar
  146. 146.
    Hao Y., Creson T., Zhang L., et al. (2004) Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J. Neurosci. 24, 6590–6599.PubMedCrossRefGoogle Scholar
  147. 147.
    McAllister A. K. (2002) Neurotrophins and cortical development. Results Probl. Cell. Differ. 39, 89–112.PubMedGoogle Scholar
  148. 148.
    McAllister A. K., Katz L. C., and Lo D. C. (1999) Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22, 295–318.PubMedCrossRefGoogle Scholar
  149. 149.
    McAllister A. K. (2001) Neurotrophins and neuronal differentiation in the central nervous system. Cell. Mol. Life Sci. 58, 1054–1060.PubMedCrossRefGoogle Scholar
  150. 150.
    Rasmusson A. M., Shi L., and Duman R. (2002) Downregulation of BDNF mRNA in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock. Neuropsychopharmacology 27, 133–142.PubMedCrossRefGoogle Scholar
  151. 151.
    Smith M. A. and Cizza G. (1996) Stress-induced changes in brain-derived neurotrophic factor expression are attenuated in aged Fischer 344/N rats. Neurobiol. Aging 17, 859–864.PubMedCrossRefGoogle Scholar
  152. 152.
    Ueyama T., Kawai Y., Nemoto K., Sekimoto M., Tone S., and Senba E. (1997) Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci. Res. 28, 103–110.PubMedCrossRefGoogle Scholar
  153. 153.
    Smith M. A., Makino S., Kvetnansky R., and Post R. M. (1995) Effects of stress on neurotrophic factor expression in the rat brain. Ann. NY Acad. Sci. 771, 234–239.PubMedCrossRefGoogle Scholar
  154. 154.
    Nibuya M., Morinobu S., and Duman R. S. (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. 15, 7539–7547.PubMedGoogle Scholar
  155. 155.
    Chen B., Dowlatshahi D., MacQueen G. M., Wang J. F., and Young L. T. (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol. Psychiatry 50, 260–265.PubMedCrossRefGoogle Scholar
  156. 156.
    Shirayama Y., Chen A. C., Nakagawa S., Russell D. S., and Duman R. S. (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 22, 3251–3261.PubMedGoogle Scholar
  157. 157.
    Fukumoto T., Morinobu S., Okamoto Y., Kagaya A., and Yamawaki S. (2001) Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain. Psychopharmacology (Berl) 158, 100–106.CrossRefGoogle Scholar
  158. 158.
    Hashimoto R., Takei N., Shimazu K., Christ L., Lu B., and Chuang D. M. (2002) Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology 43, 1173–1179.PubMedCrossRefGoogle Scholar
  159. 159.
    Yu I. T., Kim J. S., Lee S. H., Lee Y. S., and Son H. (2003) Chronic lithium enhances hippocampal long-term potentiation, but not neurogenesis, in the aged rat dentate gyrus. Biochem. Biophys. Res. Commun. 303, 1193–1198.PubMedCrossRefGoogle Scholar
  160. 160.
    Son H., Yu I. T., Hwang S. J., et al. (2003) Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus. J. Neurochem. 85, 872–881.PubMedCrossRefGoogle Scholar
  161. 161.
    Schlessinger J. (2000) Cell signaling by receptor tyrosine kinases. Cell 103, 211–225.PubMedCrossRefGoogle Scholar
  162. 162.
    Poo M. M. (2001) Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 24–32.PubMedCrossRefGoogle Scholar
  163. 163.
    Patapoutian A. and Reichardt L. F. (2001) Trk receptors: mediators of neurotrophin action. Curr. Opin. Neurobiol. 11, 272–280.PubMedCrossRefGoogle Scholar
  164. 164.
    Yuan P. X., Huang L. D., Jiang Y. M., Gutkind J. S., Manji H. K., and Chen G. (2001) The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J. Biol. Chem. 276, 31,674–31,683.Google Scholar
  165. 165.
    Manji H. K., Moore G. J., Rajkowska G., and Chen G. (2000) Neuroplasticity and cellular resilience in mood disorders. Mol. Psychiatry 5, 578–593.PubMedCrossRefGoogle Scholar
  166. 166.
    Huang X., Wu D. Y., Chen G., Manji H., and Chen D. F. (2003) Support of retinal ganglion cell survival and axon regeneration by lithium through a Bcl-2-dependent mechanism. Invest. Ophthalmol. Vis. Sci. 44, 347–354.PubMedCrossRefGoogle Scholar
  167. 167.
    Quiroz J., Singh J., Gould T. D., Denicoff K. D., Zarate C. A., and Manji H. K. (2004) Emerging experimental therapeutics for bipolar disorder: clues from the molecular pathophysiology. Mol. Psychiatry. 9, 734–755.PubMedCrossRefGoogle Scholar
  168. 168.
    De Sarno P., Li X., and Jope R. S. (2002) Regulation of Akt and glycogen synthase kinase-3beta phosphorylation by sodium valproate and lithium. Neuropharmacology 43, 1158–1164.PubMedCrossRefGoogle Scholar
  169. 169.
    Kato T. and Kato N. (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord. 2, 180–190.PubMedCrossRefGoogle Scholar
  170. 170.
    Tseng W. P. and Lin-Shiau S. Y. (2002) Long-term lithium treatment prevents neurotoxic effects of beta-bungarotoxin in primary cultured neurons. J. Neurosci. Res. 69, 633–641.PubMedCrossRefGoogle Scholar
  171. 171.
    Wang J. F., Azzam J. E., and Young L. T. (2003) Valproate inhibits oxidative damage to lipid and protein in primary cultured rat cerebrocortical cells. Neuroscience 116, 485–489.PubMedCrossRefGoogle Scholar
  172. 172.
    Pivovarova N. B., Pozzo-Miller L. D., Hongpaisan J., and Andrews S. B. (2002) Correlated calcium uptake and release by mitochondria and endoplasmic reticulum of CA3 hippocampal dendrites after afferent synaptic stimulation. J. Neurosci. 22, 10,653–10,661.Google Scholar
  173. 173.
    Williams J. M., Thompson V. L., Mason-Parker S. E., Abraham W. C., and Tate W. P. (1998) Synaptic activity-dependent modulation of mitochondrial gene expression in the rat hippocampus. Brain. Res. Mol. Brain Res. 60, 50–56.PubMedCrossRefGoogle Scholar
  174. 174.
    Mattson M. P. and Liu D. (2003) Mitochondrial potassium channels and uncoupling proteins in synaptic plasticity and neuronal cell death. Biochem. Biophys. Res. Commun. 304, 539–549.PubMedCrossRefGoogle Scholar
  175. 175.
    Murphy A. N., Bredesen D. E., Cortopassi G., Wang E., and Fiskum G. (1996) Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria. Proc. Natl. Acad. Sci. USA 93, 9893–9898.PubMedCrossRefGoogle Scholar
  176. 176.
    Duchen M. R. (2000) Mitochondria and Ca(2+)in cell physiology and pathophysiology. Cell Calcium 28, 339–348.PubMedCrossRefGoogle Scholar
  177. 177.
    Hoshi M., Sato M., Kondo S., et al. (1995) Different localization of tau protein kinase I/glycogen synthase kinase-3 beta from glycogen synthase kinase-3 alpha in cerebellum mitochondria. J. Biochem. (Tokyo) 118, 683–685.Google Scholar
  178. 178.
    King T. D., Bijur G. N., and Jope R. S. (2001) Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3beta and attenuated by lithium. Brain. Res. 919, 106–114.PubMedCrossRefGoogle Scholar
  179. 179.
    Dumont P., Leu J. I., Della Pietra A. C. 3rd, George D. L., and Murphy M. (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat. Genet. 33, 357–365.PubMedCrossRefGoogle Scholar
  180. 180.
    Marchenko N. D., Zaika A., and Moll U. M. (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 275, 16,202–16,212.CrossRefGoogle Scholar
  181. 181.
    Sansome C., Zaika A., Marchenko N. D., and Moll U. M. (2001) Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett. 488, 110–115.PubMedCrossRefGoogle Scholar
  182. 182.
    Watcharasit P., Bijur G. N., Song L., Zhu J., Chen X., and Jope R. S. (2003) Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J. Biol. Chem. 278, 48,872–48,879.CrossRefGoogle Scholar
  183. 183.
    Bijur G. N. and Jope R. S. (2003) Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J. Neurochem. 87, 1427–1435.PubMedCrossRefGoogle Scholar
  184. 184.
    Linseman D. A., Butts B. D., Precht T. A., et al. (2004) Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J. Neurosci. 24, 9993–10,002.PubMedCrossRefGoogle Scholar
  185. 185.
    Moore G. J., Bebchuk J. M., Hasanat K., et al. (2000) Lithium increases N-acetyl-aspartate in the human brain: in vivo evidence in support of bcl-2’s neurotrophic effects? Biol. Psychiatry 48, 1–8.PubMedCrossRefGoogle Scholar
  186. 186.
    Moore G. J., Bebchuk J. M., Wilds I. B., Chen G., and Manji H. K. (2000) Lithium-induced increase in human brain grey matter. Lancet 356, 1241,1242.PubMedCrossRefGoogle Scholar
  187. 187.
    Silverstone P. H., Wu R. H., O’Donnell T., Ulrich M., Asghar S. J., and Hanstock C. C. (2003) Chronic treatment with lithium, but not sodium valproate, increases cortical N-acetylaspartate concentrations in euthymic bipolar patients. Int. Clin. Psychopharmacol. 18, 73–79.PubMedCrossRefGoogle Scholar
  188. 188.
    Sassi R., Nicoletti M., Brambilla P., et al. (2002) Increased gray matter in lithium-treated bipolar disorder patients. Neurosci. Lett. 329, 243.PubMedCrossRefGoogle Scholar
  189. 189.
    Atack J. R. (1997) Inositol monophosphatase inhibitors—lithium mimetics? Med. Res. Rev. 17, 215–224.PubMedCrossRefGoogle Scholar
  190. 190.
    Atack J. R., Cook S. M., Watt A. P., Fletcher S. R., and Ragan C. I. (1993) In vitro and in vivo inhibition of inositol monophosphatase by the bisphosphonate L-690,330. J. Neurochem. 60, 652–658.PubMedCrossRefGoogle Scholar
  191. 191.
    Atack J. R., Prior A. M., Fletcher S. R., Quirk K., McKernan R., and Ragan C. I. (1994) Effects of L-690,488, a prodrug of the bisphosphonate inositol monophosphatase inhibitor L-690,330, on phosphatidylinositol cycle markers. J. Pharmacol. Exp. Ther. 270, 70–76.PubMedGoogle Scholar
  192. 192.
    Pollack S. J., Atack J. R., Knowles M. R., et al. (1994) Mechanism of inositol monophosphatase, the putative target of lithium therapy. Proc. Natl. Acad. Sci. USA 91, 5766–5770.PubMedCrossRefGoogle Scholar
  193. 193.
    Bone R., Springer J. P., and Atack J. R. (1992) Structure of inositol monophosphatase, the putative target of lithium therapy. Proc. Natl. Acad. Sci. USA 89, 10,031–10,035.CrossRefGoogle Scholar
  194. 194.
    Chen S. J., Sweatt J. D., and Klann E. (1997) Enhanced phosphorylation of the postsynaptic protein kinase C substrate RC3/neurogranin during long-term potentiation. Brain. Res. 749, 181–187.PubMedCrossRefGoogle Scholar
  195. 195.
    Conn P. J. and Sweatt J. D. (1994) Protein kinase C in the nervous system. In: Protein Kinase C, Kuo J. F., ed. New York: Oxford University Press, pp. 199–235.Google Scholar
  196. 196.
    Manji H. K. and Chen G. (2002) PKC, MAP kinases and the bcl-2 family of proteins as long-term targets for mood stabilizers. Mol. Psychiatry 7 (Suppl 1), S46-S56.PubMedCrossRefGoogle Scholar
  197. 197.
    Bebchuk J. M., Arfken C. L., Dolan-Manji S., Murphy J., Hasanat K., and Manji H. K. (2000) A preliminary investigation of a protein kinase C inhibitor in the treatment of acute mania. Arch. Gen. Psychiatry 57, 95–97.PubMedCrossRefGoogle Scholar
  198. 198.
    Horgan K., Cooke E., Hallett M. B., and Mansel R. E. (1986) Inhibition of protein kinase C mediated signal transduction by tamoxifen. Importance for antitumour activity. Biochem. Pharmacol. 35, 4463–4465.PubMedCrossRefGoogle Scholar
  199. 199.
    O’Brian C. A., Housey G. M., and Weinstein I. B. (1988) Specific and direct binding of protein kinase C to an immobilized tamoxifen analogue. Cancer Res. 48, 3626–3629.PubMedGoogle Scholar
  200. 200.
    Frank R. N. (2002) Potential new medical therapies for diabetic retinopathy: protein kinase C inhibitors. Am. J. Ophthalmol. 133, 693–698.PubMedCrossRefGoogle Scholar
  201. 201.
    Wheeler G. D. (2003) Ruboxistaurin (Eli Lilly). IDrugs 6, 159–163.PubMedGoogle Scholar
  202. 202.
    Aiello L. P. (2002) The potential role of PKC beta in diabetic retinopathy and macular edema. Surv. Ophthalmol. 47 (Suppl 2), S263-S269.PubMedCrossRefGoogle Scholar
  203. 203.
    Parker P. J. (1999) Inhibition of protein kinase C—do we, can we, and should we? Pharmacol. Ther. 82, 263–267.PubMedCrossRefGoogle Scholar
  204. 204.
    Kaidanovich O. and Eldar-Finkelman H. (2002) The role of glycogen synthase kinase-3 in insulin resistance and Type 2 diabetes. Expert Opin. Ther. Targets 6, 555–561.PubMedCrossRefGoogle Scholar
  205. 205.
    Bhat R. V. and Budd S. L. (2002) GSK3beta signalling: casting a wide net in Alzheimer’s disease. Neurosignals 11, 251–261.PubMedCrossRefGoogle Scholar
  206. 206.
    Alvarez G., Munoz-Montano J. R., Satrustegui J., Avila J., Bogonez E., and Diaz-Nido J. (2002) Regulation of tau phosphorylation and protection against beta-amyloid-induced neurodegeneration by lithium. Possible implications for Alzheimer’s disease. Bipolar Disord. 4, 153–165.PubMedCrossRefGoogle Scholar
  207. 207.
    Sun X., Sato S., Murayama O., et al. (2002) Lithium inhibits amyloid secretion in COS7 cells transfected with amyloid precursor protein C100. Neurosci. Lett. 321, 61–64.PubMedCrossRefGoogle Scholar
  208. 208.
    Tong H., Imahashi K., Steenbergen C., and Murphy E. (2002) Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase—dependent pathway is cardioprotective. Circ. Res. 90, 377–379.PubMedCrossRefGoogle Scholar
  209. 209.
    Frame S. and Cohen P. (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 359, 1–16.PubMedCrossRefGoogle Scholar
  210. 210.
    Sasaki C., Hayashi T., Zhang W. R., et al. (2001) Different expression of glycogen synthase kinase-3beta between young and old rat brains after transient middle cerebral artery occlusion. Neurol. Res. 23, 588–592.PubMedCrossRefGoogle Scholar
  211. 211.
    Dorronsoro I., Castro A., and Martinez A. (2002) Inhibitors of glycogen synthase kinase-3: future therapy for unmet medical needs. Expert Opin. Ther. Patents 12, 1527–1536.CrossRefGoogle Scholar
  212. 212.
    Martinez A., Alonso M., Castro A., Perez C., and Moreno F. J. (2002) First non-ATP competitive glycogen synthase kinase 3 beta (GSK-3beta) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J. Med. Chem. 45, 1292–1299.PubMedCrossRefGoogle Scholar
  213. 213.
    Plotkin B., Kaidanovich O., Talior I., and Eldar-Finkelman H. (2003) Insulin mimetic action of synthetic phosphorylated Peptide inhibitors of glycogen synthase kinase-3. J. Pharmacol. Exp. Ther. 305, 974–980.PubMedCrossRefGoogle Scholar
  214. 214.
    Martinez A., Castro A., Dorronsoro I., and Alonso M. (2002) Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Med. Res. Rev. 22, 373–384.PubMedCrossRefGoogle Scholar
  215. 215.
    Cohen P. and Frame S. (2001) The renaissance of GSK3. Nat. Rev. Mol. Cell Biol. 2, 769–776.PubMedCrossRefGoogle Scholar
  216. 216.
    Ilouz R., Kaidanovich O., Gurwitz D., and Eldar-Finkelman H. (2002) Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem. Biophys. Res. Commun. 295, 102–106.PubMedCrossRefGoogle Scholar
  217. 217.
    D’Sa C. and Duman R. (2002) Antidepressants and neuroplasticity. Bipolar Disorder 4, 183.CrossRefGoogle Scholar
  218. 218.
    Manji H. K., Quiroz J. A., Sporn J., et al. (2003) Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol. Psychiatry 53, 707–742.PubMedCrossRefGoogle Scholar
  219. 219.
    Zeller E., Stief H. J., Pflug B., and Sastre-y-Hernandez M. (1984) Results of a phase II study of the antidepressant effect of rolipram. Pharmacopsychiatry 17, 188–190.PubMedGoogle Scholar
  220. 220.
    Bobon D., Breulet M., Gerard-Vandenhove M. A., et al. (1988) Is phosphodiesterase inhibition a new mechanism of antidepressant action? A double blind double-dummy study between rolipram and desipramine in hospitalized major and/or endogenous depressives. Eur. Arch. Psychiatry. Neurol. Sci. 238, 2–6.PubMedCrossRefGoogle Scholar
  221. 221.
    Hebenstreit G. F., Fellerer K., Fichte K., et al. (1989) Rolipram in major depressive disorder: results of a double-blind comparative study with imipramine. Pharmacopsychiatry 22, 156–160.PubMedGoogle Scholar
  222. 222.
    Zhu J., Mix E., and Winblad B. (2001) The antidepressant and antiinflammatory effects of rolipram in the central nervous system. CNS Drug. Rev. 7, 387–398.PubMedCrossRefGoogle Scholar
  223. 223.
    Marks P., Rifkind R. A., Richon V. M., Breslow R., Miller T., and Kelly W. K. (2001) Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer. 1, 194–202.PubMedCrossRefGoogle Scholar
  224. 224.
    Ketter T. A. and Wang P. W. (2003) The emerging differential roles of GABAergic and antiglutamatergic agents in bipolar disorders. J. Clin. Psychiatry 64(Suppl 3), 15–20.PubMedGoogle Scholar
  225. 225.
    Plotsky P. M., Owens M. J., and Nemeroff C. B. (1998) Psychoneuroendocrinology of depression. Hypothalamic-pituitary-adrenal axis. Psychiatr. Clin. North. Am. 21, 293–307.PubMedCrossRefGoogle Scholar
  226. 226.
    Gold P. W. and Chrousos G. P. (2002) Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol. Psychiatry 7, 254–275.PubMedCrossRefGoogle Scholar
  227. 227.
    Seymour P. A., Schmidt A. W., and Schulz D. W. (2003) The pharmacology of CP-154,526, a non-peptide antagonist of the CRH1 receptor: a review. CNS Drug Rev. 9, 57–96.PubMedCrossRefGoogle Scholar
  228. 228.
    Mansbach R. S., Brooks E. N., and Chen Y. L. (1997) Antidepressant-like effects of CP-154,526, a selective CRF1 receptor antagonist. Eur. J. Pharmacol. 323, 21–26.PubMedCrossRefGoogle Scholar
  229. 229.
    Miner J. N., Tyree C., Hu J., et al. (2003) A non-steroidal glucocorticoid receptor antagonist. Mol. Endocrinol. 17, 117–127.PubMedCrossRefGoogle Scholar
  230. 230.
    Honer C., Nam K., Fink C., et al. (2003) Glucocorticoid receptor antagonism by cyproterone acetate and RU486. Mol. Pharmacol. 63, 1012–1020.PubMedCrossRefGoogle Scholar
  231. 231.
    Ur E., Turner T. H., Goodwin T. J., Grossman A., and Besser G. M. (1992) Mania in association with hydrocortisone replacement for Addison’s disease. Postgrad. Med. J. 68, 41–43.PubMedCrossRefGoogle Scholar
  232. 232.
    Salek F. S., Bigos K. L., and Kroboth P. D. (2002) The influence of hormones and pharmaceutical agents on DHEA and DHEA-S concentrations: a review of clinical studies. J. Clin. Pharmacol. 42, 247–266.PubMedCrossRefGoogle Scholar
  233. 233.
    Zarate C. A., Quiroz J., Payne J., and Manji H. K. (2002) Modulators of the glutamatergic system: implications for the development of improved therapeutics in mood disorders. Psychopharmacol. Bull. 36, 35–83.PubMedGoogle Scholar
  234. 234.
    Einat H., Manji H. K., and Belmater R. H. (2003) New approaches to modeling bipolar disorder. Psychopharm. Bull. 37, 47–63.Google Scholar

Copyright information

© The Humana Press Inc 2005

Authors and Affiliations

  • Rosilla F. Bachmann
    • 1
  • Robert J. Schloesser
    • 1
  • Todd D. Gould
    • 1
  • Husseini K. Manji
    • 1
  1. 1.Laboratory of Molecular PathophysiologyNational Institute of Mental HealthBethesda

Personalised recommendations