Molecular Neurobiology

, Volume 32, Issue 2, pp 123–132

Removing pathogenic memories

A neurobiology of psychotherapy
  • Diego Centonze
  • Alberto Siracusano
  • Paolo Calabresi
  • Giorgio Bernardi
Article

Abstract

Experimental research examining the neural bases of nondeclarative memory has offered intriguing insight into how functional and dysfunctional implicit learning affects the brain. Long-term modifications of synaptic transmission, in particular, are currently considered the most plausible mechanism underlying memory trace encoding and compulsions, addiction, anxiety, and phobias. Therefore, an effective psychotherapy must be directed to erase maladaptive implicit memories and aberrant synaptic plasticity.

This article describes the neurobiological bases of pathogenic memory disruption to provide some insight into how psychotherapy works. At least two mechanisms of unwanted memory erasing appear to be implicated in the effects of psychotherapy: inhibition of memory consolidation/reconsolidation and extinction. Behavioral evidence demonstrated that these two ways to forget are profoundly distinct in nature, and it is increasingly clear that their cellular, synaptic, and molecular underpinnings are different. Accordingly, the blockade of consolidation/reconsolidation erases memories by reversing the plasticity associated with memory maintenance, whereas extinction is a totally new form of plasticity that, similar to the plasticity underlying the old memory, requires protein synthesis-dependent synaptic remodeling.

Index Entries

Extinction forgetting long-term depression long-term potentiation reconsolidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Freud S. (1909) Five Lectures on Psycho-Analysis. In: The Standard Edition of the Complete Psychological Works of Sigmund Freud, vol. 11, Strachey J., ed. London: Hogarth Press, 1953, pp. 3–55.Google Scholar
  2. 2.
    Kandel E. R. (1999) Biology and the future of psychoanalysis: a new intellectual framework for psychiatry revisited. Am. J. Psychiatry 156, 505–524.PubMedGoogle Scholar
  3. 3.
    Schall J. D. (2001) Neural basis of deciding, choosing and acting. Nat. Rev. Neurosci. 2, 33–42.PubMedCrossRefGoogle Scholar
  4. 4.
    Glimcher P.W. (2002) Decisions, decisions, decisions: choosing a biological science of choice. Neuron 36, 323–332.PubMedCrossRefGoogle Scholar
  5. 5.
    Bliss T. V. and Collingridge G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 362, 31–39.CrossRefGoogle Scholar
  6. 6.
    Martin S. J., Grimwood P. D., and Morris R. G. M. (2000) Synaptic plasticity and memory: an evaluation hypothesis. Annu. Rev. Neurosci. 23, 649–711.PubMedCrossRefGoogle Scholar
  7. 7.
    Kandel E. R. (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038.PubMedCrossRefGoogle Scholar
  8. 8.
    Calabresi P., De Murtas M., and Bernardi G. (1997) The neostriatum beyond the motor function: experimental and clinical evidence. Neuroscience 78, 39–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Graybiel A. M. and Rauch S. L. (2000) Toward a neurobiology of obsessive-compulsive disorder. Neuron 28, 343–347.PubMedCrossRefGoogle Scholar
  10. 10.
    Leckman J. F. and Riddle M. A. (2000) Tourette’s syndrome: when habit-forming systems form habits of their own? Neuron 28, 349–354.PubMedCrossRefGoogle Scholar
  11. 11.
    Holden C. (2001) “Behavioral” addictions: do they exist? Science 294, 980–982.PubMedCrossRefGoogle Scholar
  12. 12.
    Berke J. D. and Hyman S. E. (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25, 515–532.PubMedCrossRefGoogle Scholar
  13. 13.
    Nestler E. J. (2001) Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2, 119–128.PubMedCrossRefGoogle Scholar
  14. 14.
    Ungless M. A., Whistler J. L., Malenka R. C., and Bonci A. (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583–587.PubMedCrossRefGoogle Scholar
  15. 15.
    Gerdeman G. L., Partridge J. G., Lupica C. R., and Lovinger D. M. (2003) It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci. 26, 184–192.PubMedCrossRefGoogle Scholar
  16. 16.
    Rogan M. T., Stäubli U. V., and LeDoux J. E. (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390, 604–607.PubMedCrossRefGoogle Scholar
  17. 17.
    Bauer E. P., LeDoux J. E., Nader K. (2001) Fear conditioning and LTP in the lateral amygdala are sensitive to the same stimulus contingencies. Nat. Neurosci. 4, 687,688.PubMedCrossRefGoogle Scholar
  18. 18.
    Maren S. (2001) Neurobiology of Pavlovian fear conditioning. Annu. Rev. Neurosci. 24, 897–931.PubMedCrossRefGoogle Scholar
  19. 19.
    Anderson M. C. and Green C. (2001) Suppressing unwanted memories by executive control. Nature 410, 366–369.PubMedCrossRefGoogle Scholar
  20. 20.
    Hebb D. O. (1949) Organization of Behavior: a Neuropsychological Theory. New York: John Wiley and Sons Press.Google Scholar
  21. 21.
    McGaugh J. L. (1966) Time-dependent processes in memory storage. Science 153, 1351–1358.PubMedCrossRefGoogle Scholar
  22. 22.
    McGaugh J. L. (2000) Memory—a century of consolidation. Science 287, 248–251.PubMedCrossRefGoogle Scholar
  23. 23.
    Duncan C. P. (1949) The retroactive effect of electroconvulsive shock. J. Comp. Physiol. Psychol. 42, 32–44.CrossRefPubMedGoogle Scholar
  24. 24.
    Davis H. P. and Squire L. R. (1984) Protein synthesis and memory. A review. Psychol. Bull. 96, 518–559.PubMedCrossRefGoogle Scholar
  25. 25.
    Goelet P., Castellucci V. F., Schacher S., and Kandel E. R. (1986) The long and short of long-term memory—a molecular framework. Nature 322, 419–422.PubMedCrossRefGoogle Scholar
  26. 26.
    Bourtchuladze R., Frenguelli B., Cioffi D., Blendy J., Schutz G., and Silva A. (1994) Deficient long-term potentiation in mice with a targeted mutation of cAMP-responsive element binding protein. Cell 79, 59–68.PubMedCrossRefGoogle Scholar
  27. 27.
    Müller G. E. and Pilzecker A. (1900) Experimentelle beitrage zur lehre vom gedachtnis. Z. Psychol. 1, 117–131.Google Scholar
  28. 28.
    Nader K. (2003) Memory traces unbound. Trends Neurosci. 26, 65–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Misanin J. R., Miller R. R., and Lewis D. J. (1968) Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 160, 203–204.CrossRefGoogle Scholar
  30. 30.
    Spear N. (1973) Retrieval of memory in animals. Psychol. Rev. 80, 163–194.CrossRefGoogle Scholar
  31. 31.
    Przybyslawski J. and Sara S. J. (1997) Reconsolidation of memory after its reactivation. Behav. Brain Res. 84, 241–246.PubMedCrossRefGoogle Scholar
  32. 32.
    Loftus E. F. and Yuille J. C. (1984) Departures from reality in human perception and memory. In: Memory Consolidation: Psychobiology of Cognition, Weingartner H., and Parker E.S., eds. Hillsdale, NJ: Lawrence Erbaum Associates, pp. 163–184.Google Scholar
  33. 33.
    Freud S. (1914) Recollection, Repetition and Working Through. In: The Standard Edition of the Complete Psychological Works of Sigmund Freud, vol. 12, Strachey J., ed. London: Hogarth Press, 1953, pp. 147–158.Google Scholar
  34. 34.
    Myers K. M. and Davis M. (2002) Behavioral and neural analysis of extinction. Neuron 36, 567–584.PubMedCrossRefGoogle Scholar
  35. 35.
    Beggs J. M., Brown T. H., Byrne J. H., et al. (1999) Learning and memory: basic mechanisms. In: Fundamental Neuroscience, Zigmond M. J., Bloom F. E., Landis S. C., Roberts J. L., and Squire L. R., eds. London: Academic Press, pp. 1411–1454.Google Scholar
  36. 36.
    Robbins S. J. (1990) Mechanisms underlying spontaneous recovery in autoshaping. J. Exp. Psychol. Anim. Behav. Process 16, 235–249.CrossRefGoogle Scholar
  37. 37.
    Bouton M. E. and Bolles R. C. (1979) Contextual control of the extinction of conditioned fear. Learn. Motiv. 10, 455–466.CrossRefGoogle Scholar
  38. 38.
    Rodriguez B. I., Craske M. G., Mineka S., and Hladek D. (1999) Context-specificity of relapse: effects of therapist and environmental context on return to fear. Behav. Res. Ther. 37, 845–862.PubMedCrossRefGoogle Scholar
  39. 39.
    Izquierdo I., Cammarota M., Vianna M. M., and Bevilaqua L. R. (2004) The inhibition of acquired fear. Neurotox. Res. 6, 175–188.PubMedCrossRefGoogle Scholar
  40. 40.
    Milekic M. H., and Alberini C. M. (2002) Temporally graded requirement for protein synthesis following memory reactivation. Neuron 36, 521–525.PubMedCrossRefGoogle Scholar
  41. 41.
    Pedreira M. E. and Maldonado H. (2003) Protein synthesis subserves reconsolidation or extinction depending on reminder duration. Neuron 38, 863–869.PubMedCrossRefGoogle Scholar
  42. 42.
    Bliss T. V. and Lømo T. (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356.PubMedGoogle Scholar
  43. 43.
    Centonze D., Picconi B., Gubellini P., Bernardi G., and Calabresi P. (2001) Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur. J. Neurosci. 13, 1071–1077.PubMedCrossRefGoogle Scholar
  44. 44.
    Bashir Z. I. and Collingridge G. L. (1994) An investigation of depotentiation of long-term potentiation in the CA1 region of the hippocampus. Exp. Brain Res. 100, 437–443.PubMedGoogle Scholar
  45. 45.
    Huang C. -C., and Hsu K. -S. (2001) Progress in understanding the factors regulating reversibility of long-term potentiation. Rev. Neurosci. 12, 51–68.PubMedGoogle Scholar
  46. 46.
    Huang C. -C., Liang Y. -C., and Hsu K. -S. (2001) Characterization of the mechanism underlying the reversal of long term potentiation by low frequency stimulation at hippocampal CA1 synapses. J. Biol. Chem. 51, 48,108–48,117.Google Scholar
  47. 47.
    Picconi B., Centonze D., Hakansson K., et al. (2003) Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat. Neurosci. 6, 501–506.PubMedGoogle Scholar
  48. 48.
    Kida S., Josselyn S. A., de Ortiz S. P., et al. (2002) CREB required for the stability of new and reactivated fear memories. Nat. Neurosci. 5, 348–355.PubMedCrossRefGoogle Scholar
  49. 49.
    Yin J. C., Wallach J. S., Del Vecchio M., et al. T. (1994) Induction of a dominant negative CREB trangene specifically blocks long-term memory in Drosophila. Cell 79, 49–58.PubMedCrossRefGoogle Scholar
  50. 50.
    Genoux D., Haditsch U., Knobloch M., Michalon A., Storm D., and Mansuy I. M. (2002) Protein phosphatase 1 is a molecular constraint on learning and memory. Nature 418, 970–975.PubMedCrossRefGoogle Scholar
  51. 51.
    Otmakhova N. A. and Lisman J. E. (1998) D1/D5 dopamine receptors inhibit depotentiation at CA1 synapses via cAMP-dependent mechanism. J. Neurosci. 18, 1270–1279.PubMedGoogle Scholar
  52. 52.
    Silva A. J. and Josselyn S. A. (2002) The molecules of forgetfulness. Nature 418, 929,930.PubMedCrossRefGoogle Scholar
  53. 53.
    Montgomery J. M. and Madison D. V. (2002) State-dependent heterogeneity in synaptic depression between pyramidal cell pairs. Neuron 33, 765–777.PubMedCrossRefGoogle Scholar
  54. 54.
    Philpot B.D., and Bear M.F. (2002) Synaptic plasticity in an altered state. Neuron 33, 665–671.PubMedCrossRefGoogle Scholar
  55. 55.
    Anokhin K. V., Tiunova A. A., and Rose S. P. (2002) Reminder effects—reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks. Eur. J. Neurosci. 15, 1759–1765.PubMedCrossRefGoogle Scholar
  56. 56.
    Freud S. (1919) The Uncanny. In: The Standard Edition of the Complete Psychological Works of Sigmund Freud, vol. 17, Strachey J., ed. London: Hogarth Press, 1953, pp. 219–256.Google Scholar
  57. 57.
    Freud S. (1920) Beyond the Pleasure Principle. In: The Standard Edition of the Complete Psychological Works of Sigmund Freud, vol. 18, Strachey J., ed. London: Hogarth Press, 1953, pp. 7–64.Google Scholar
  58. 58.
    Blair H. T., Schafe G. E., Bauer E. P., Rodrigues S. M., and LeDoux J. E. (2001) Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn. Mem. 8, 229–242.PubMedCrossRefGoogle Scholar
  59. 59.
    Bauer E. P., Schafe G. E., and LeDoux J. E. (2002) NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J. Neurosci. 22, 5239–5249.PubMedGoogle Scholar
  60. 60.
    Lee H. and Kim J. (1998) Amygdalar NMDA receptors are critical for new fear learning in previously fear-conditioned rats. J. Neurosci. 18, 8444–8454.PubMedGoogle Scholar
  61. 61.
    Miserendino M. J. D., Sananes C. B., Melia K. R., and Davis M. (1990) Blocking of acquisition but not of expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature 345, 716–718.PubMedCrossRefGoogle Scholar
  62. 62.
    Lee H. J., Choi J. S., Brown T. H., and Kim J. J. (2001) Amygdalar NMDA receptors are critical for the expression of multiple conditioned fear responses. J. Neurosci. 21, 4116–4124.PubMedGoogle Scholar
  63. 63.
    Rodrigues S. M., Schafe G. E., and LeDoux J. E. (2001) Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J. Neurosci. 21, 6889–6896.PubMedGoogle Scholar
  64. 64.
    Falls W. A., Miserendino M. J. D., and Davis M. (1992) Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J. Neurosci. 12, 854–863.PubMedGoogle Scholar
  65. 65.
    Szapiro G., Vianna M. R. M., McGaugh J. L., Medina J. H., Izquierdo I. (2003) The role of NMDA glutamate receptors, PKA, MAPK and CAMKII in the hippocampus in extinction of conditioned fear. Hippocampus 13, 53–58.PubMedCrossRefGoogle Scholar
  66. 66.
    Hardingham N., Glazewski S., Pakhotin P., et al. (2003) Neocortical long-term potentiation and experience-dependent synaptic plasticity require alpha-calcium/calmodulin-dependent protein kinase II autophosphorylation. J. Neurosci. 23, 4428–4436.PubMedGoogle Scholar
  67. 67.
    Liu S., Rao Y., and Daw N. (2003) Roles of protein kinase A and protein kinase G in synaptic plasticity in the visual cortex. Cereb. Cortex 13, 864–869.PubMedCrossRefGoogle Scholar
  68. 68.
    Morozov A., Muzzio I. A., Bourtchouladze R., et al. (2003) Rap1 couples cAMP signaling to a distinct pool of p42/44MAPK regulating excitability, synaptic plasticity, learning, and memory. Neuron 39, 309–325.PubMedCrossRefGoogle Scholar
  69. 69.
    Waltereit R. and Weller M. (2003) Signaling from cAMP/PKA to MAPK and synaptic plasticity. Mol. Neurobiol. 27, 99–106.PubMedCrossRefGoogle Scholar
  70. 70.
    Schafe G. E., Nader K., Blair H. T., and LeDoux J. E. (2001) Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci. 24, 540–546.PubMedCrossRefGoogle Scholar
  71. 71.
    Dudai Y. (2002) Molecular bases of long-term memories: a question of persistence. Curr. Opin. Neurobiol. 12, 211–216.PubMedCrossRefGoogle Scholar
  72. 72.
    Lu K. -T., Walker D. L., and Davis M. (2001) Mitogen-activated protein kinase cascade in the basolateral nucleus of the amygdala is involved in extinction of fear-potentiated startle. J. Neurosci. 21, RC162.Google Scholar
  73. 73.
    Marsicano G., Wotjak C. T., Azad S. C., et al. (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534.PubMedCrossRefGoogle Scholar
  74. 74.
    Gaiarsa J.-L., Caillard O., and Ben-Ari Y. (2002) Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci. 25, 564–570.PubMedCrossRefGoogle Scholar
  75. 75.
    Caillard O., Ben-Ari Y., and Gaiarsa J. L. (1999) Mechanisms of induction and expression of long-term depression at GABAergic synapses in neonatal rat hippocampus. J. Neurosci. 19, 7568–7577.PubMedGoogle Scholar
  76. 76.
    Sutton M. A., Schmidt E. F., Choi K. -H., et al. (2003) Extinction-induced upregulation in AMPA receptors reduces cocaine-seeking behaviour. Nature 421, 70–75.PubMedCrossRefGoogle Scholar
  77. 77.
    Wang J. H. and Stelzer A. (1996) Shared calcium signalling pathways in the induction of long-term potentiation and synaptic disinhibition in CA1 pyramidal cell dendrites. J. Neurophysiol. 75, 1687–1702.PubMedGoogle Scholar
  78. 78.
    McGaugh J. L., Castellano C., and Brioni J. (1990) Picrotoxin enhances latent extinction of conditioned fear. Behav. Neurosci. 104, 264–267.PubMedCrossRefGoogle Scholar
  79. 79.
    Katona I., Rancz E. A., Acsady L., et al. (2001) Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J. Neurosci. 21, 9506–9518.PubMedGoogle Scholar
  80. 80.
    Freund T. F., Katona I., and Piomelli D. (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol. Rev. 83, 1017–1066.PubMedGoogle Scholar
  81. 81.
    Iversen L. (2003) Cannabis and the brain. Brain 126, 1252–1270.PubMedCrossRefGoogle Scholar
  82. 82.
    Alger B. E. and Pitler T. A. (1995) Retrograde signaling at GABAA-receptor synapses in the mammalian CNS. Trends Neurosci. 18, 333–340.PubMedCrossRefGoogle Scholar
  83. 83.
    Wilson R. I. and Nicoll R. A. (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592.PubMedCrossRefGoogle Scholar
  84. 84.
    Ohno-Shosaku T., Maejima T., and Kano M. (2001) Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29, 729–738.PubMedCrossRefGoogle Scholar
  85. 85.
    Chevaleyre V. and Castillo P. E. (2003) Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38, 461–472.PubMedCrossRefGoogle Scholar
  86. 86.
    Ramon y Cajal S. (1892) A new concept of the histology of the central nervous system. In: Neurological Classics in Modern Translation, Rottenberg D. A., and Hochberg F. H., eds. New York: Hafner, 1977, pp. 7–29.Google Scholar
  87. 87.
    Freud S. (1895) Project for a Scientific Psychology In: The Standard Edition of the Complete Psychological Works of Sigmund Freud, vol. 1, Strachey J., ed. London: Hogarth Press, 1953, pp. 283–397.Google Scholar

Copyright information

© The Humana Press Inc 2005

Authors and Affiliations

  • Diego Centonze
    • 1
    • 2
  • Alberto Siracusano
    • 3
  • Paolo Calabresi
    • 2
    • 4
  • Giorgio Bernardi
    • 1
    • 2
  1. 1.Clinica Neurologica, Dipartimento di NeuroscienzeUniversità Tor VergataItaly
  2. 2.Fondazione Santa LuciaCentro Europeo per la Ricerca sul CervelloItaly
  3. 3.Clinica Psichiatrica, Dipartimento di NeuroscienzeUniversità Tor VergataRomeItaly
  4. 4.Clinica NeurologicaUniversità di PerugiaPerugiaItaly

Personalised recommendations