Molecular Neurobiology

, Volume 32, Issue 1, pp 89–103

Lipid signaling in neural plasticity, brain repair, and neuroprotection

Article

Abstract

The extensive networking of the cells of the nervous system results in large cell membrane surface areas. We now know that neuronal membranes contain phospholipid pools that are the reservoirs for the synthesis of specific lipid messengers on neuronal stimulation or injury. These messengers in turn participate in signaling cascades that can either promote neuronal injury or neuroprotection. Prostaglandins are synthesized as a result of cyclooxygenase activity. In the first step of the arachidonic acid cascade, the short-lived precursor, prostaglandin H2, is synthesized. Additional steps in the cascade result in the synthesis of an array of prostaglandins, which participate in numerous physiological and neurological processes. Our laboratory recently reported that the membrane polyunsaturated fatty acid, docosahexaenoic acid, is the precursor of oxygenation products now known as the docosanoids, some of which are powerful counter-proinflammatory mediators. The mediator 10,17S-docosatriene (neuroprotectin D1, NPD1) counteracts leukocyte infiltration, NF-κ activation, and proinflammatory gene expression in brain ischemia-reperfusion and is an apoptostatic mediator, potently counteracting oxidative stress-triggered apoptotic DNA damage in retinal pigment epithelial cells. NPD1 also upregulates the anti-apoptotic proteins Bcl-2 and Bcl-xL and decreases pro-apoptotic Bax and Bad expression. Another biologically active messenger derived from membrane phospholipids in response to synaptic activity is platelet-activating factor (PAF). The tight regulation of the balance between synthesis (via phospholipases) and degradation (via acetylhydrolases) of PAF modulates the functions of this lipid messenger. Under pathological conditions, this balance is tipped, and PAF becomes a proinflammatory mediator and neurotoxic agent. The newly discovered docosahexaenoic acid signaling pathways, as well as other lipid messengers related to synaptic activation, may lead to the clarification of clinical issues relevant to stroke, age-related macular degeneration, spinal cord injury, Alzheimer’s disease, and other diseases that include neuroinflammatory components.

Index entries

Cyclooxygenases diacylglycerol kinase ɛ docosahexaenoic acid docosanoids neuroprotection platelet-activating factor prostaglandins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shimizu T. and Wolfe L. S. (1990). Arachidonic acid cascade and signal transduction. J. Neurochem. 55, 1–15.PubMedCrossRefGoogle Scholar
  2. 2.
    Bazan N. G. (2003). Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J. Lipid Res. 44, 2221–2233.PubMedCrossRefGoogle Scholar
  3. 3.
    Bazan N. G., Packard M. G., Teather L., and Allan G. (1997). Bioactive lipids in excitatory neurotransmission and neuronal plasticity. Neurochem. Int. 30, 225–231.PubMedCrossRefGoogle Scholar
  4. 4.
    Thoren S., Weinander R., Saha S., et al. (2003). Human microsomal prostaglandin E synthase-1: purification, functional characterization, and projection structure determination. J. Biol. Chem. 278, 22,199–22,209.CrossRefGoogle Scholar
  5. 5.
    Kobayashi T., Nakatani Y., Tanioka T., et al. (2004). Regulation of cytosolic prostaglandin E synthase by phosphorylation. Biochem. J. 381, 59–69.PubMedCrossRefGoogle Scholar
  6. 6.
    Birkle D. L. and Bazan, N. G. (1987). Effect of bicuculline-induced status epilepticus on prostaglandins and hydroxyeicosatetraneoic acids in rat brain subcellular fractions J. Neurochem. 48, 1768–1778.PubMedCrossRefGoogle Scholar
  7. 7.
    Bazan, N. G. (1995). Inflammation. A signal terminator. Nature 374, 501–502.PubMedCrossRefGoogle Scholar
  8. 8.
    Packard M. G., Teather L., and Bazan N. G. (1996). Effects of intrastriatal injections of platelet-activating factor and the PAF antagonist BN 52021 on memory. Neurobiol. Learn. Mem. 66, 176–182.PubMedCrossRefGoogle Scholar
  9. 9.
    Kumar R., Harvey K., Kester M., Hanahan D., and Olsen M. (1988). Production and effects of platelet-activating factor in the rat brain. Biochim. Biophys. Acta. 963, 375–390.PubMedGoogle Scholar
  10. 10.
    Tu B. and Bazan N. G. (2003). Hippocampal kindling epileptogenesis upregulates neuronal cyclooxygenase-2 expression in neocortex. Exper. Neurol. 179, 167–175.CrossRefGoogle Scholar
  11. 11.
    Chen C. and Bazan N. G. (2005). Endogenous PGE2 regulates membrane excitability and synaptic transmission in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 93, 929–941.PubMedCrossRefGoogle Scholar
  12. 12.
    Pettitt T. R. and Wakelam M. J. O. (1999). Diacylglycerol kinase epsilon, but not zeta, selectively removes polyunsaturated diacylglycerol, inducing altered protein kinase C distribution in vivo. J. Biol. Chem. 274, 36,181–36,186.Google Scholar
  13. 13.
    Hodgkin M. N., Pettitt T. R., Martin A., Michell R. H., Pemberton A. J., and Wakelam M. J. (1998). Diacylglycerols and phosphatidates: which molecular species are intracellular messengers? Trends Biochem. Sci. 23, 200–204.PubMedCrossRefGoogle Scholar
  14. 14.
    Horrocks L. A. and Farooqui A. A. (1994). NMDA receptor-stimulated release of arachidonic acid: mechanisms for the Bazan effect. In: Cell Signal Transduction, Second Messengers, and Protein Phosphorylation in Health and Disease, Municio A. M. and Miras-Portugal M. T., eds. New York: Plenum Press, pp. 113–128.Google Scholar
  15. 15.
    Sun G. Y., Xu J., Jensen M. D., and Simonyi A. (2004). Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J. Lipid Res. 45, 205–213.PubMedCrossRefGoogle Scholar
  16. 16.
    Aveldaño M. I. and Bazan N. G. (1975). Rapid production of diacylglycerols enriched in arachidonate and stearate during early brain ischemia. J. Neurochem. 25, 919,920.PubMedCrossRefGoogle Scholar
  17. 17.
    Aveldaño de Caldironi M. I., and Bazan N. G. (1979). Alpha-methyl-p-tyrosine inhibits the production of free arachidonic acid and diacylglycerols in brain after a single electroconvulsive shock. Neurochem. Res. 4, 213–221.PubMedCrossRefGoogle Scholar
  18. 18.
    Prescott S. M. and Majerus P. W. (1981). The fatty acid composition of phosphatidylinositol from thrombin-stimulated human platelets. J. Biol. Chem. 256, 579–582.PubMedGoogle Scholar
  19. 19.
    Rodriguez de Turco E. B., Tang W., Topham M. K., et al. (2001). Diacylglycerol kinase ε regulates seizure susceptibility and long-term potentiation through arachidonoyl-inositol lipid signaling. Proc. Natl. Acad. Sci. USA 98, 4740–4745.PubMedCrossRefGoogle Scholar
  20. 20.
    Petralia R. S., Wang Y. X., Singh S., et al. (1997). A monoclonal antibody shows discrete cellular and subcellular localizations of mGluR1 alpha metabotrophic glutamate receptors. J. Chem. Neuroanat. 13, 77–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Berthele A., Laurie D. J., Platzer S., Zieglgansberger W., Tolle T. R., and Sommer B. (1998). Differential expression of rat and human type I metabotrophic glutamate receptor splice variant messenger RNAs. Neuroscience 85, 733–749.PubMedCrossRefGoogle Scholar
  22. 22.
    Lambeau G., Barhanin J., Schweitz H., Qar J., and Lazdunski M. (1989). Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom. J. Biol. Chem. 264, 11,503–11,510.Google Scholar
  23. 23.
    Lambeau G., Schmid-Alliana A., Lazdunski M., and Barhanin J. (1990). Identification and purification of a very high affinity binding protein for toxic phospholipases A2 in skeletal muscle. J. Biol. Chem. 265, 9526–9532.PubMedGoogle Scholar
  24. 24.
    Lambeau G., Ancian P., Barhanin J., and Lazdunski M. (1994). Cloning and expression of a membrane receptor for secretory phospholipases A2. J. Biol. Chem. 269, 1575–1578.PubMedGoogle Scholar
  25. 25.
    Lambeau G., Ancian P., Nicolas J. -P., et al. (1995). Structural elements of secretory phospholipases A2 involved in the binding to M-type receptors. J. Biol. Chem. 270, 5534–5540.PubMedCrossRefGoogle Scholar
  26. 26.
    Kolko M., DeCoster M. A., Rodriguez de Turco E. B., and Bazan N. G. (1996). Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures J. Biol. Chem. 271, 32,722,-32,728.Google Scholar
  27. 27.
    Kolko M., Rodriguez de Turco E. B., Digmer N. H., and Bazan N. B. (2003). Neuronal damage by secretory phospholipase A2: modulation by cytosolic phospholipase A2, platelet-activating factor, and cyclooxygenase-2 in neuronal cells in culture. Neurosci. Lett. 338, 164–168.PubMedCrossRefGoogle Scholar
  28. 28.
    Kolko M., Bruhn T., Christensen T., et al. (1999). Secretory phospholipase A2 potentiates glutamate-induced rat striatal neuronal cell death in vivo. Neurosci. Lett. 274, 167–170.PubMedCrossRefGoogle Scholar
  29. 29.
    DeCoster M. A., Lambeau G., Lazdunski M., and Bazan N. G. (2002). Secreted phospholipase A2 potentiates glutamate-induced calcium increase and cell death in primary neuronal cultures. J. Neurosci. Res. 67, 634–645.PubMedCrossRefGoogle Scholar
  30. 30.
    Matsuzawa A., Makoto M., Atsumi G., et al. (1996). Release of secretory phospholipase A2 from rat neuronal cells and its possible function in the regulation of catecholamine secretion. Biochem. J. 318, 701–709.PubMedGoogle Scholar
  31. 31.
    Scott B. L. and Bazan N. G. (1989). Membrane docosahexanoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. USA 86, 2903–2907.PubMedCrossRefGoogle Scholar
  32. 32.
    Li J., Wetzel M. G., and O’Brien P. J. (1992). Transport of n-3 fatty acids from the intestine to the retina in rats. J. Lipid Res. 33, 539–548.PubMedGoogle Scholar
  33. 33.
    Wang N. and Anderson R. E. (1993). Synthesis of docosahexaenoic acid by retina and retinal pigment epithelium. Biochemistry 32, 13,703–13,709.Google Scholar
  34. 34.
    Wang N. and Anderson R. E. (1993). Transport of 22:6n-3 in plasma and uptake into retinal pigment epithelium and retina. Exp. Eye Res. 57, 225–233.PubMedCrossRefGoogle Scholar
  35. 35.
    Martin R. E., Rodriguez de Turco E. B., and Bazan N. G. (1994). Developmental maturation of hepatic n-3 polyunsaturated fatty acid metabolism: supply of docosahexaenoic acid to retina and brain. J. Nutr. Biochem. 5, 151–160.CrossRefGoogle Scholar
  36. 36.
    Gordon W. C. and Bazan N. G. (1993). Visualization of [3H]docosahexaenoic acid trafficking through photoreceptors and retinal pigment epithelium by electron microscopic autoradiography. Invest. Ophthalmol. Vis. Sci. 57, 2402–2411.Google Scholar
  37. 37.
    Bazan N. G., Gordon W. C., and Rodriguez de Turco E. B (1992). The uptake, metabolism and conservation of docosahexaenoic acid (22:6 -3). in brain and retina: alterations in liver and retina 22:6 metabolism during inherited progressive retinal degeneration. Am. Oil Chem. Soc. 107–115.Google Scholar
  38. 38.
    Rodriguez de Turco E. B., Jackson F. R., Parkins N., and Gordon W. C. (2000). Strong association of unesterified [3H]docosahexaenoic acid and [3H-docosahexaenoyl]phosphatidate to rhodopsin during in vivo labeling of frog retinal rod outer segments. Neurochem. Res. 25, 695–703.CrossRefGoogle Scholar
  39. 39.
    Gordon W. C., Rodriguez de Turco E. B., and Bazan N. B. (1992). Retinal pigment epithelial cells play a central role in the conservation of docosahexaenoic acid by photoreceptor cells after shedding and phagocytosis. Curr. Eye Res. 11, 73–83.PubMedGoogle Scholar
  40. 40.
    Bazan N. G., Rodriguez de Turco E. B., and Gordon W. C. (1994). Docosahexaenoic acid supply to the retina and its conservation in photoreceptor cells by active retinal pigment epithelium-mediated recycling. In: Fatty Acids and Lipids: Biological Aspects, Galli C., Simopoulos A. P., and Tremoli E., eds. Basel, Switzerland: Karger, pp. 120–123.Google Scholar
  41. 41.
    Converse C. A., Hammer H. M., Packard C. J., and Shephard J. (1983). Plasma lipid abnormalities in retinitis pigmentosa and related conditions. Trans. Ophthalmol. Soc. UK 103, 508–512.PubMedGoogle Scholar
  42. 42.
    Anderson R. E., Maude M. B., Lewis R. S., Newsome D. A., and Fishman G. A. (1987). Abnormal plasma levels of polyunsaturated fatty acid in autosomal dominant retinitis pigmentosa. Exp. Eye Res. 44, 155–159.PubMedCrossRefGoogle Scholar
  43. 43.
    Gong J., Rosner B., Rees D. G., Berson E. L., Weigel-Di-Franco C. A., and Schaefer E. J. (1992). Plasma docosahexaenoic acid levels in various genetic forms of retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 33, 2596–2602.PubMedGoogle Scholar
  44. 44.
    Hoffman D. R. and Birch D. G. (1998). Omega 3 fatty acid status in patients with retinitis pigmentosa. World Rev. Nutr. Diet 83, 52–60.PubMedGoogle Scholar
  45. 45.
    Bazan N. G. and Rodriguez de Turco E. B. (1996). Alterations in plasma lipoproteins and DHA transport in progressive rod-cone degeneration (prcd). In: Retinal Degeneration and Regeneration, Proceedings of an International Symposium in Kanazawa, Japan, July 8–9, 1995. Kato S., Osborne N. N., and Tamai M., eds. Amsterdam, New York: Kugler Publications, pp. 89–97.Google Scholar
  46. 46.
    Maude M. B., Anderson E. O., and Anderson R. E. (1999). Polyunsaturated fatty acids are lower in blood lipids of Usher’s type I but not Usher’s type II. Invest. Ophthalmol. Vis. Sci. 39, 2164–2166.Google Scholar
  47. 47.
    Anderson R. E., Maude M. B., Alvarez R. A., Acland G., and Aguirre G. D. (1999). A hypothesis to explain the reduced blood levels of docosahexaenoic acid in inherited retinal degenerations caused by mutations in genes encoding retina-specific proteins. Lipids 34, S235-S237.PubMedCrossRefGoogle Scholar
  48. 48.
    Aguirre G. D., Acland G. M., Maude M. B., and Anderson R. E. (1997). Diets enriched in docosahexaenoic acid fail to correct progressive rodcone degeneration (prcd). phenotype. Invest. Ophthalmol. Vis. Sci. 38, 2387–2407.PubMedGoogle Scholar
  49. 49.
    Chen H., Ray J., Scarpino V., Acland G. M., Aguirre G. D., and Anderson R. E. (1999). Synthesis and release of docosahexaenoic acid by the RPE cells of prcd-affected dogs. Invest. Ophthalmol. Vis. Sci. 40, 2418–2422.PubMedGoogle Scholar
  50. 50.
    Nourooz-Zadeh J., Liu E. H. C., Anggard E. E., and Halliwell B. (1998). F4-isoprostanes: a novel class of prostanoids formed during peroxidation of docosahexaenoic acid. Biochem. Biophys. Res. Commun. 242, 338–344.PubMedCrossRefGoogle Scholar
  51. 51.
    Roberts L. J. II, Montine T. J., Markesbery W. R., et al. (1998). Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 273, 13,605–13,612.CrossRefGoogle Scholar
  52. 52.
    Morrow J. D., Hill K. E., Burk R. F., et al. (1990). A series of prostaglandin F2-like compounds are produced in vivo in human by a non-cyclooxy-genase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. USA 87, 9383–9387.PubMedCrossRefGoogle Scholar
  53. 53.
    Nourooz-Zadeh J., Liu E. H. C., Yhlen B., Anggard E. E., and Halliwell B. (1999). F4-isoprostanes as specific marker of docosahexaenoic acid peroxidation in Alzheimer’s disease. J. Neurochem. 72, 734–740.PubMedCrossRefGoogle Scholar
  54. 54.
    Bazan N. G., Birkle D. L., and Reddy T. S. (1984). Docosahexaneoic acid (22:6, n 3) is metabolized to lipoxygenase reaction products in the retina. Biochem. Biophys. Res. Commun. 125, 741–747.PubMedCrossRefGoogle Scholar
  55. 55.
    Bazan N. G. (1990). Supply of n-3 polyunsaturated fatty acids and their significance in the central nervous system. In: Nutrition and the Brain, Wurtman R. J. and Wurtman J. J., eds., New York: Raven Press, pps. 1–24.Google Scholar
  56. 56.
    Marcheselli V. L., Hong S., Lukiw W. J., et al. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem. 278, 43,807–43,817.CrossRefGoogle Scholar
  57. 57.
    Serhan C. N., Hong S., Gronert K., Colgan S. P., Devchand P. R., and Mirick G. (2002). Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196, 1025–1037.PubMedCrossRefGoogle Scholar
  58. 58.
    Serhan C. N., Clish C. B., Brannon J., Colgan S. P., Chiang N., and Gronert K. (2000). Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2: nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med. 192, 1197–1204.PubMedCrossRefGoogle Scholar
  59. 59.
    Hong S., Gronert K., Devchand P. R., Moussignac R. L., and Serhan C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. J. Biol. Chem. 278, 14,677–14,687.Google Scholar
  60. 60.
    Kato K., Clark G. D., Bazan N. G., and Zorumski C. F. (1994). Platelet activating factor as a potential retrograde messenger in Ca1 hippocampal long-term potentiation. Nature 367, 175–179.PubMedCrossRefGoogle Scholar
  61. 61.
    Arai A. and Lynch G. (1992). Antagonists of the platelet-activating factor receptor block long-term potentiation in hippocampal slices. Eur. J. Neurosci. 4, 411–419.PubMedCrossRefGoogle Scholar
  62. 62.
    Clark G. D., Happel L. T., Zorumski C. F., and Bazan N. G. (1992). Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factor. Neuron 9, 1211–1216.PubMedCrossRefGoogle Scholar
  63. 63.
    Wieraszko A., Li G., Kornecki E., Hogan M. V., and Ehrlich Y. H. (1993). Long-term potential in the hippocampus induced by platelet-activating factor. Neuron 10, 553–557.PubMedCrossRefGoogle Scholar
  64. 64.
    Bito H., Nakamura M., Honda Z., et al. (1992). Platelet-activating factor (PAF) receptor in rat brain: PAF mobilizes intracellular Ca2+ in hippocampal neurons. Neuron 9, 285–294.PubMedCrossRefGoogle Scholar
  65. 65.
    Arai H., Koizumi H., Aoki J., and Inoue K. (2002). Platelet-activating factor acetylhydrolase (PAF-AH). J. Biochem. (Tokyo). 131, 635–640.PubMedGoogle Scholar
  66. 66.
    Bazan N. G. and Allan G. (1988). Platelet-activating factor and other bioactive lipids. In: Cerebrovascular Disease, Pathophysiology, Diagnosis and Management, Ginsberg M. D. and Bogousslavsky J., eds. Malden, MA: Blackwell Science Publishers, pp. 532–555.Google Scholar
  67. 67.
    Bussolino P., Gremo F., Tetta C., Pescarmona G., and Camussi G. (1986). Production of platelet-activating factor by chick retina. J. Biol. Chem. 261, 16,502–16,508.Google Scholar
  68. 68.
    Bussolino F., Torelli S., Stefanini E., and Gremo, F. (1989). Platelet-activating factor production occurs through stimulation of cholinergic and dopaminergic receptors in the chick retina. J. Lipid Med. 1, 283–288.Google Scholar
  69. 69.
    Kornecki E. and Ehrlich Y. H. (1988). Neuoregulatory and neuropathological actions of the ether-phospholipid platelet-activating factor. Science 240, 1792–1794.PubMedCrossRefGoogle Scholar
  70. 70.
    Prescott S. M., Zimmerman G. A., Stafforini D. M., and McIntyre T. M. (2000). Platelet-activating factor and related lipid mediators. Annu. Rev. Biochem. 69, 419–445.PubMedCrossRefGoogle Scholar
  71. 71.
    Williams J. H., Errington M. L., Lynch M. A., and Bliss T. V. P. (1989). Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 341, 739–742.PubMedCrossRefGoogle Scholar
  72. 72.
    O’Dell T. J., Hawkins R. D., Kandel E. R., and Arancio O. (1991). Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc. Natl. Acad. Sci. USA 88, 11,285–11,289.CrossRefGoogle Scholar
  73. 73.
    Kato K., Uruno K., Saito K., and Kato H. (1991). Both arachidonic acid and 1-oleoyl-2-acetyl glycerol in low magnesium solution induce long-term potentiation in hippocampal CA1 neurons in vitro. Brain Res. 563, 94–100.PubMedCrossRefGoogle Scholar
  74. 74.
    Izquierdo I., Fin C., Schmitz P. K., et al. (1995). Memory enhancement by intrahippocampal, intraamygdala, or intraentorhinal in fusion of platelet-activating factor measured in an inhibitory avoidance task. Proc. Natl. Acad. Sci. USA 92, 5047–5051.PubMedCrossRefGoogle Scholar
  75. 75.
    Jerusalinsky D., Fin C., Quillfelot J. A., et al. (1994). Effects of antagonists of platelet-activating factor receptors on memory of inhibitory avoidance in rats. Behav. Neural Biol. 62, 1–3.PubMedCrossRefGoogle Scholar
  76. 76.
    Bazan N. G., Packard M. G., Teather L., and Allan G. (1997). Bioactive lipids in excitatory neurotransmission and neuronal plasticity. Neurochem. Int. 30, 225–231.PubMedCrossRefGoogle Scholar
  77. 77.
    Teather L. A., Packard M. G., and Bazan N. G. (1998). Effects of posttraining intrahippocampal injections of platelet-activating factor and PAF antagonists on memory. Neurobiol. Learning Memory 70, 349–363.CrossRefGoogle Scholar
  78. 78.
    Teather L. A., Packard M. G., and Bazan N. G. (2001). Differential interaction of platelet-activating factor and NMDA receptor function in hippocampal and dorsal striatal memory processes. Neurobiol. Learn Memory 75, 310–324.CrossRefGoogle Scholar
  79. 79.
    Chen C. and Bazan N. G. (1999). Platelet-activating factor inhibits ionotropic GABA receptor activity in cultured hippocampal neurons. NeuroReport 10, 3831–3835.PubMedCrossRefGoogle Scholar
  80. 80.
    Panetta T., Marcheselli V. L., Braquet P., Spinnewyn B., and Bazan N. G. (1987). Effects of a platelet-activating factor antagonist (BN 52021). on free fatty acids, diacylglycerols, polyphosphoinositides and blood now in the gerbil brain: inhibition of ischemia reperfusion induced cerebral injury. Biochem. Biophys. Res. Commun. 149, 580–587.PubMedCrossRefGoogle Scholar
  81. 81.
    Marcheselli V. L., Rossowska M. J., Domingo M. T., Braquet P., and Bazan N. G. (1990). Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J. Biol. Chem. 265, 9140–9145.PubMedGoogle Scholar
  82. 82.
    Squinto S. P., Block A. L., Braquet P., and Bazan N. G. (1989). Platelet-activating factor stimulates a Fos/Jun/AP-1 transcriptional signaling system in human neuroblastoma cells. J. Neurosci. Res. 24, 558–566.PubMedCrossRefGoogle Scholar
  83. 83.
    Squinto S. P., Braquet P., Block A. L., and Bazan N. G. (1990). Platelet-activating factor activates HIV promoter in transfected SH-SY5Y neuroblastoma cells and MOLT-4 T lymphocytes. J. Mol. Neurosci. 2, 79–84.PubMedCrossRefGoogle Scholar
  84. 84.
    Bazan N. G., Squinto S. P., Braquet P., Panetta T., and Marcheselli V. L. (1991). Platelet-activating factor and polyunsaturated fatty acids in cerebral ischemia or convulsions: intracellular PAF-binding sites and activation of a Fos/Jun/AP-1 transcriptional signaling system. Lipids 26, 1236–1242.PubMedCrossRefGoogle Scholar
  85. 85.
    Honda Z., Nakamura M., Miki I., et al. (1991). Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature 349, 342–346.PubMedCrossRefGoogle Scholar
  86. 86.
    Kunz D., Gerard N. P., and Gerard C. (1992). The human leukocyte platelet-activating factor receptor. CDNA cloning, cell surface expression, and construction of a novel epitope-bearing analog. J. Biol. Chem. 267, 9101–9106.PubMedGoogle Scholar
  87. 87.
    Sugimoto T., Tsuchimochi H., McGregor C. G., Mutoh H., Shimizu T., and Kurachi Y. (1992). Molecular cloning and characterization of the platelet-activating factor receptor gene expressed in the human heart. Biochem. Biophys. Res Commun. 189, 617–624.PubMedCrossRefGoogle Scholar
  88. 88.
    Chen C., Magee J. C., Marcheselli V. L., Hardy M., and Bazan N. G. (2001). Attenuated long-term potentiation in hippocampal dentate gyrus neurons of mice deficient in the platelet-activating factor receptor. J. Neurophysiol. 85, 384–390.PubMedGoogle Scholar
  89. 89.
    Kobayashi K., Ishii S., Kume K., Takahasi T., Shimizu T., and Manabe T. (1999). Platelet-activating factor receptor is not required for long-term potentiation in the hippocampal CA1 region. Eur. J. Neurosci. 11, 1313–1316.PubMedCrossRefGoogle Scholar
  90. 90.
    Ihida K., Predescu D., Czekay R. -P., and Palade G. E. (1999). Platelet activating factor receptor (PAF-R). is found in a large endosomal compartment in human umbilical vein endothelial cells. J.Cell Sci. 112, 285–295.PubMedGoogle Scholar
  91. 91.
    Marrache A. M., Gobeil F. Jr., Bernier S. G., et al. (2002). Proinflammatory gene induction by platelet-activating factor mediated via its cognate nuclear receptor. J. Immunol. 169, 6474–6481.PubMedGoogle Scholar
  92. 92.
    Bazan N. G., Fletcher B. S., Herschman H. R., and Mukherjee P. K. (1994). Platelet-activating factor and retinoic acid synergistically activate the inducible prostaglandin synthase gene. Proc. Natl. Acad. Sci. USA 91, 5252–5256.PubMedCrossRefGoogle Scholar
  93. 93.
    Prehn J. H. M. and Krieglstein J. (1993). Platelet-activating factor antagonists reduce excitotoxic damage in cultured neurons from embryonic chick telencephalon and protect the rat hippocampus and neocortex from ischemic injury in vivo. J. Neurosci. Res. 34, 179–188.PubMedCrossRefGoogle Scholar
  94. 94.
    Gilboe D. D., Kintner D., Fitzpatrick J. H., et al. (1991). Recovery of postischemic brain metabolism and function following treatment with a free radical scavenger and platelet-activating factor antagonists. J. Neurochem. 56, 311–319.PubMedCrossRefGoogle Scholar
  95. 95.
    Lindsberg P. J., Yue T.-L., Frerichs K. U., Hallenbeck J. M., and Feuerstein G. (1990). Evidence for platelet-activating factor as a novel mediator of experimental stroke in rabbits. Stroke 21, 1452–1457.PubMedGoogle Scholar
  96. 96.
    Oberpichler H., Sauer D., Rossberg C., Mennel H. D., and Krieglstein J. (1990). PAF antagonist ginkgolide-B reduces post-ischemic neuronal damage in rat brain hippocampus. J. Cereb. Blood Flow Metab. 10, 133–135.PubMedGoogle Scholar
  97. 97.
    Kochanek P. M., Dutka A. J., Kumaroo K. K., and Hallenbeck J. M. (1987). Platelet-activating factor receptor blockade enhances recovery after multifocal brain ischemia. Life Sci. 41, 2639–2644.PubMedCrossRefGoogle Scholar
  98. 98.
    Ogden F., DeCoster M. A., and Bazan N. G. (1998). Recombinant plasma-type platelet-activating factor acetylhydrolase attenuates NMDA-induced hippocampal neuronal apoptosis. J. Neurosci. Res. 53, 677–684.PubMedCrossRefGoogle Scholar
  99. 99.
    Tjoelker L. W., Wilder C., Eberhardt C., et al. (1995). Anti-inflammatory properties of a platelet-activating factor acetylhydrolase. Nature 374, 549–553.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  1. 1.LSU Neuroscience Center of Excellence and Department of OphthalmologyLouisiana State University Health Sciences CenterNew Orleans

Personalised recommendations