Advertisement

Molecular Neurobiology

, Volume 31, Issue 1–3, pp 81–93 | Cite as

Oxidative stress in mitochondria

Decision to survival and death of neurons in neurodegenerative disorders
  • Makoto Naoi
  • Wakako Maruyama
  • Masayo Shamoto-Nagai
  • Hong Yi
  • Yukihiro Akao
  • Masashi Tanaka
Article

Abstract

In mitochondria, oxidative phosphorylation and enzymatic oxidation of biogenic amines by monoamine oxidase produce reactive oxygen and nitrogen species, which are proposed to cause neuronal cell death in neurodegenerative disorders, including Parkinson’s and Alzheimer’s disease. In these disorders, mitochondrial dysfunction, increased oxidative stress, and accumulation of oxidation-modified proteins are involved in cell death in definite neurons. The interactions among these factors were studied by use of a peroxynitrite-generating agent, N-morpholino sydnonimine (SIN-1) and an inhibitor of complex I, rotenone, in human dopaminergic SH-SY5Y cells. In control cells, peroxynitrite nitrated proteins, especially the subunits of mitochondrial complex I, as 3-nitrotyrosine, suggesting that neurons are exposed to constant oxidative stress even under physiological conditions. SIN-1 and an inhibitor of proteasome, carbobenzoxy-l-isoleucyl-γ-t-butyl-l-analyl-l-leucinal (PSI), increased markedly the levels of nitrated proteins with concomitant induction of apoptosis in the cells. Rotenone induced mitochondrial dysfunction and accumulation and aggregation of proteins modified with acrolein, an aldehyde product of lipid peroxidation in the cells. At the same time, the activity of the 20S β-subunit of proteasome was reduced significantly, which degrades oxidative-modified protein. The mechanism was proved to be the result of the modification of the 20S β-subunit with acrolein and to the binding of other acrolein-modified proteins to the 20S β-subunit.

Increased oxidative stress caused by SIN-1 treatment induced a decline in the mitochondrial membrane potential, ΔΨm, and activated mitochondrial apoptotic signaling and induced cell death in SH-SY5Y cells. As another pathway, p38 mitogen-activated protein (MAP) kinase and exracellular signal-regulated kinase (ERK) mediated apoptosis induced by SIN-1. On the other hand, a series of neuroprotective propargylamine derivatives, including rasagiline [N-propargyl-1(R)aminoindan]and (−)deprenyl, intervened in the activation of apoptotic cascade by reactive oxygen species-reactive nitrogen species in mitochondria through stabilization of the membrane potential, ΔΨm. In addition, rasagiline induced antiapoptotic Bcl-2 and glial cell line-derived neurotrophic factor (GDNF) in SH-SY5Y cells, which was mediated by the ERK-nuclear factor (NF)-κB pathway. These results are discussed in relation to the interaction of oxidative stress and mitochondria in the regulation of neuronal death and survival in neurodegenerative diseases.

Index Entries

Oxidative stress mitochondria complex I proteasome 3-nitrotyrosine acrolein Parkinson’s disease apoptosis rasagiline transcription factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Halliwell B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem. 59, 1609–1623.PubMedCrossRefGoogle Scholar
  2. 2.
    Kroemer G., Dallaporta B., and Resch-Rigon M. (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619–642.PubMedCrossRefGoogle Scholar
  3. 3.
    Thompson C.G. (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462.PubMedCrossRefGoogle Scholar
  4. 4.
    Yoritaka A., Hattori N., Uchida K., Tanaka M., Stadtman E.R., and Mizuno Y. (1996) Immuno-histochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc. Natl. Acad. Sci. USA 93, 2696–29701.PubMedCrossRefGoogle Scholar
  5. 5.
    Sayre L.M., Zelasko D.A., Harris P.L.R., Perry G., Salomon R.G., and Smith M.A. (1997) 4-Hydroxynonenal-derived advanced lipid peroxydation and products are increased in Alzheimer’s disease. J. Neurochem. 68, 2092–2097.PubMedCrossRefGoogle Scholar
  6. 6.
    Pedersen W.A., Fu W., Keller J.N., et al. (1998) Protein modification by the lipid peroxidation product 4-hydrononenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann. Neurol. 44, 819–824.PubMedCrossRefGoogle Scholar
  7. 7.
    Beckman J.S. (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem. Res. Toxicol. 9, 836–844.PubMedCrossRefGoogle Scholar
  8. 8.
    Halliwell B. (1997) What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? FEBS Lett. 411, 157–160.PubMedCrossRefGoogle Scholar
  9. 9.
    White R., Brock T., Cjang L., et al. (1994) Superoxide and peroxynitrite in atherosclerosis. Proc. Natl. Acad. Sci. USA 91, 1044–1048.PubMedCrossRefGoogle Scholar
  10. 10.
    Koppal T., Draake J., Yatin S., et al. (1999) Peroxynitrite-induced alternation in synaptosomal membrane proteins: insight into oxidative stress in Alzheimer’s disease. J. Neurochem. 72, 310–317.PubMedCrossRefGoogle Scholar
  11. 11.
    Good P.F., Hsu A., Werner P., Perl D.P., and Olanow C.W. (1998) Protein nitration in Parkinson’s disease. J. Neuropathol. Exp. Neurol. 57, 338–342.PubMedGoogle Scholar
  12. 12.
    Kato Y., Maruyama W., Naoi M., Hashizume Y., and Osawa T. (1998) Immunohistochemical detection of dityrosine in lipofuscin pigments in the aged human brain. FEBS Lett. 439, 231–234.PubMedCrossRefGoogle Scholar
  13. 13.
    Chung K.K.K., Dawson V.L., and Dawson T.M. (2001) The role of the ubiquitin-proteasomal pathway in Parkinson’s disease and other neurodegenerative disorders. TINS 24, S7-S14.PubMedGoogle Scholar
  14. 14.
    Maruyama W., Kato Y., Yamamoto T., Oh-hashi K., Hashizume Y., and Naoi M. (2001) Peroxynitrite induced neuronal cell death in aging and age-associated disorders. J. Am. Aging Assoc. 24, 11–18.Google Scholar
  15. 15.
    Kato K., Ogino Y., Aoki T., Uchida K., Kawakishi S., and Osawa T. (1997) Phenolic anti-oxidants prevent peroxynitrite-derived collagen modification in vitro. J. Agric. Food Chem. 45, 3004–3009.CrossRefGoogle Scholar
  16. 16.
    Tanaka M., Miyabayashi S., Nishikimi M., et al. (1998) Extensive defects of mitochondrial electron-transfer chain in muscular cytochrome c oxidase deficiency. Pediatr. Res. 24, 447–454.Google Scholar
  17. 17.
    Mizuno Y., Ohta S., Tanaka M., et al. (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem. Biophys. Res. Commun. 163, 1450–1455.PubMedCrossRefGoogle Scholar
  18. 18.
    Maruyama W., Takahashi T., and Naoi M. (1998) (−)Deprenyl protects human dopaminergic neuroblastoma SH-SY5Y cells from apoptosis induced by peroxynitrite and nitric oxide. J. Neurochem. 70, 2510–2515.PubMedCrossRefGoogle Scholar
  19. 19.
    Oh-hashi K., Maruyama W., Yi H., Takahashi T., Naoi M., and Isobe M. (1999) Mitogen-activated protein kinase pathway mediates peroxynitrite-induced apoptosis in human dopaminergic neuroblastoma SH-SY5Y cells. Biochem. Biophys. Res. Commun. 263, 504–509.PubMedCrossRefGoogle Scholar
  20. 20.
    Yamamoto T., Maruyama W., Kato Y., et al. (2002) Selective nitration of mitochondrial complex I by peroxynitrite: involvement in mitochondrial dysfunction and cell death of dopaminergic SH-SY5Y cells. J. Neural Transm. 109, 1–13.PubMedCrossRefGoogle Scholar
  21. 21.
    Sharpe M.A. and Cooper C.E. (1998) Interaction of peroxynitrite with mitochondrial cytochrome oxidase. J. Biol. Chem. 273, 30,961–30,970.CrossRefGoogle Scholar
  22. 22.
    Iwatsubo T., Yamaguchi H., Fujikura M., et al. (1996) Purification and characterization of Lewy bodies from the brains of patients with diffuse Lewy body disease. Am. J. Pathol. 148, 1517–1529.PubMedGoogle Scholar
  23. 23.
    Ii K., Ito H., Tanaka K., and Hirano A. (1997) Immunocytochemical co-localization of the proteasome in ubiquitinated structures in neurodegenerative disease and the elderly. J. Neuropathol. Exp. Neurol. 56, 125–131.PubMedCrossRefGoogle Scholar
  24. 24.
    Spillantini M.G., Schmidt M.L., Lee V.M.-Y., Trojanowski J.Q. Jakes R., and Goedert M. (1997) α-Synuclein in Lewy bodies. Nature 388, 837–840.CrossRefGoogle Scholar
  25. 25.
    Choi P., Osrerova-Golts N., Sparkman D., Cochran E., Lee J.M., and Wolozin B. (2000) Parkin is metabolized by the ubiquitin/proteasome system, Neuroreport 11, 2635–2638.PubMedCrossRefGoogle Scholar
  26. 26.
    Shimura H., Schlossmacher M.G., Hattori N., et al. (2001) Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implication for Parkinson’s disease. Science 293, 263–269.PubMedCrossRefGoogle Scholar
  27. 27.
    Tanaka Y., Engelender S., Igarashi S., et al. (2001) Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum. Mol. Genet. 10, 919–926.PubMedCrossRefGoogle Scholar
  28. 28.
    Shamoto-Nagai M., Maruyama W., Kato Y., et al. (2003) An inhibitor of mitochondrial complex I, rotenone, inactivates proteasome by oxidative modification and induces aggregation of oxidized proteins in SH-SY5Y cells. J. Neurosci. Res. 74, 589–597.PubMedCrossRefGoogle Scholar
  29. 29.
    Betarbert R., Sherer T.B., MacKenzie G., Garcia-Osuna M., Panov A.V., and Greenamyre J.T. (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci. 3, 1301–1306.CrossRefGoogle Scholar
  30. 30.
    Calingoson N.Y., Uchida K., and Gibson G.E. (1999) Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J. Neurochem. 72, 751–756.CrossRefGoogle Scholar
  31. 31.
    McNaught K.S.P. and Jenner P. (2001) Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci. Lett. 297, 191–194.PubMedCrossRefGoogle Scholar
  32. 32.
    Hough R., Pratt G., and Rechsteiner M. (1987) Purification of two high molecular weight proteasomes from rabbit reticulocyte lysate. J. Biol. Chem. 262, 8303–8313.PubMedGoogle Scholar
  33. 33.
    Okada K., Wangpoengtrakui C., Osawa T., Toyokuni S., Tanaka K., and Ucida K. (1992) 4-Hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress. J. Biol. Chem. 274, 23,787–23,793.Google Scholar
  34. 34.
    Hortelano S., Alvarez A.M., and Bosca L. (1999) Nitric oxide induces tyrosine nitration and release of cytochrome c preceding an increase of mitochondrial transmembrane potential in macrophases. FASEB J. 13, 2311–2317.PubMedGoogle Scholar
  35. 35.
    Cassina A.M., Hondara R., Souza J.M., et al. (2000) Cytochrome c nitration by peroxynitrite. J. Biol. Chem. 275, 21,409–21,415.CrossRefGoogle Scholar
  36. 36.
    Finucane D.M., Bossy-Wetzel E., Waterhouse N.J., Cotter T.G., and Green D.R. (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibited by Bcl-xL. J. Biol. Chem. 274, 2225–2233.PubMedCrossRefGoogle Scholar
  37. 37.
    Ghatan S., Larner S., Kinoshita Y., et al. (2000) P38 MAP kinase mediates Bax translocation in nitric oxide-induced apoptosis in neurons. J. Cell Biol. 150, 335–347.PubMedCrossRefGoogle Scholar
  38. 38.
    Cheng A., Chan S.L., Milhavet O., Wang S., and Mattson M.P. (2001) P38 MAP kinase mediates nitric oxide-induced apoptosis of neural progenitor cells. J. Biol. Chem. 276, 43,320–43,327.Google Scholar
  39. 39.
    Naoi M. and Maruyama W. (2001) Future of neuroprotection in Parkinson’s disease. Parkin Related Dis. 8, 139–145.CrossRefGoogle Scholar
  40. 40.
    Ravina B.M., Fagan S.C., Hart R.G., et al. (2003) Neuroprotective agents for clinical trials in Parkinson’s disease. Neurology 60, 1234–1240.PubMedGoogle Scholar
  41. 41.
    Mandel S., Grünblatt E., Riederer P., Gerlach M., Levites Y., and Youdim M.B.H. (2003) Neuroprotective strategies in Parkinson’s disease. CNS Drugs 17, 729–762.PubMedCrossRefGoogle Scholar
  42. 42.
    Naoi M. and Maruyama W. (2000) Anti-apoptotic function of (−)-deprenyl, in Milestones in Monoamine Oxidase Research: Discovery of (−)-Deprenyl, Magyar K. and Vizi E.S., eds., Medicina Publishing House, Budapest, pp. 171–180.Google Scholar
  43. 43.
    Maruyama W., Takahashi T., Youdim M., and Naoi M. (2002) The anti-parkinson drug, rasagiline, prevents apoptotic DNA damage induced by peroxynitrite inhuman dopaminergic neuroblastoma SH-SY5Y cells. J. Neural Transm. 109, 467–481.PubMedCrossRefGoogle Scholar
  44. 44.
    Maruyama W., Boulton A.A., Davis B.A., Dostert P., and Naoi M. (2001) Enantio-specific induction of apoptosis by an endogenous neurotoxin, N-methyl(R)salsolinol, in dopaminergic SH-SY5Y cells: suppression of apoptosis by N-(2-heptyl)-N-methylpropargylamine. J. Neural Transm. 18, 11–24.CrossRefGoogle Scholar
  45. 45.
    Naoi M., Maruyama W., Akao Y., and Yi H. (2002) Mitochondria determine the survival and death in apoptosis by an endogenous neurotoxin, N-methyl(R)salsolinol, and neuroprotection by propargylamines. J. Neural Transm. 102, 607–621.CrossRefGoogle Scholar
  46. 46.
    Maruyama W., Youdim M.B.H., and Naoi M. (2001) Antiapoptotic propertied of rasagiline, N-propargylamine-1(R)-aminoindan, and its optical (S)-isomer, TV1022. Ann. NY Acad. Sci. 939, 320–329.PubMedCrossRefGoogle Scholar
  47. 47.
    Maruyama W., Yi H., Takahashi T., et al. (2004) Neuroprotective function of R-(−)-1-(benzofuran-2-yl)-2-propargylamine, [R-(−)-BRAP] against apoptosis induced by N-methyl(R)salsolinol, and endogenous dopaminergic neurotoxin, in human dopaminergic neuroblastoma SH-SY5Y cells. Life Sci. 75, 107–117.PubMedCrossRefGoogle Scholar
  48. 48.
    Maruyama W., Akao Y., Youdim M.H., Davis B.A., and Naoi M. (2001) Transfection-enforced Bcl-2 overexpression and an anti-Parkinson drug, rasagiline, prevent nuclear accumulation of glyceraldehydes-3-phosphate dehydrogenase induced by an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol. J. Neurochem. 78, 727–735.PubMedCrossRefGoogle Scholar
  49. 49.
    Akao Y., Maruyama W., Shimizu S., et al. (2002) Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and rasagiline, N-propagyl-1(R)-aminoindan. J. Neurochem. 82, 913–923.PubMedCrossRefGoogle Scholar
  50. 50.
    Akao Y., Maruyama W., Yi H., Shamoto-Nagai M., Youdim M.B.H., and Naoi M. (2002) An anti-Parkinson’s disease drug, N-propargyl-1(R)-aminoindan (rasagiline), enhances expression of anti-apoptotic Bcl-2 in human dopaminergic SH-SY5Y cells. Neurosci. Lett. 326, 105–108.PubMedCrossRefGoogle Scholar
  51. 51.
    Maruyama W., Nitta A., Shamoto-Nagai M., et al. (2004) N-Propargyl-1(R)-aminoindan, rasagiline, increases glial cell line-derived neurotrophic factor (GDNF) in neuroblastoma SH-SY5Y cells through activation of NF-κB transcription factor. Neurochem. Int. 44, 393–400.PubMedCrossRefGoogle Scholar
  52. 52.
    Carrillo M.C., Mimami C., Kitani K., et al. (2000) Enhancing effect of rasagiline on superoxide disputes and catalase activities in the dopaminergic system in the rats. Life Sci. 67, 577–585.PubMedCrossRefGoogle Scholar
  53. 53.
    Biswas G., Anandatheerthavarada H.A., Zaidi M., and Avadhani N.G. (2003) Mitochondrial to nucleus stress signaling: a distinctive mechanism of NFkB/Rel activation through calcineurin-mediated inactivation of IkBβ. J. Cell Biol. 161, 507–519.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Makoto Naoi
    • 1
  • Wakako Maruyama
    • 2
  • Masayo Shamoto-Nagai
    • 2
  • Hong Yi
    • 1
  • Yukihiro Akao
    • 1
  • Masashi Tanaka
    • 1
  1. 1.Gifu International Institute of BiotechnologyGifuJapan
  2. 2.Department of GeriatricsNational Center for Geriatrics and GerontologyAichiJapan

Personalised recommendations