Advertisement

Molecular Neurobiology

, Volume 30, Issue 2, pp 185–200 | Cite as

Cytoplasmic tail adaptors of alzheimer’s amyloid-β protein precursor

  • Masaoki Kawasumi
  • Shuji Matsuda
  • Masaaki Matsuoka
  • Ikuo Nishimoto
Article

Abstract

Alzheimer’s disease is characterized pathologically by senile plaques in the brain. The major component of senile plaques is amyloid-β (Aβ), which is cleaved from Alzheimer’s Aβ protein precursor (AβPP). Recently, information regarding the cytoplasmic tail of AβPP has started to emerge, opening up various insights into the physiological roles of AβPP and its pathological role in Alzheimer’s disease. The cytoplasmic domain of AβPP shares the evolutionarily conserved GYENPTY motif, which binds to a number of adaptor proteins containing the phosphotyrosine interaction domain (PID). Among the PID-containing proteins, this article focuses on four groups of adaptor proteins of AβPP: Fe65, X11, mDab1, and c-Jun N-terminal kinase-interacting protein 1b/islet-brain 1.

Index Entries

AβPP(APP) the GYENPTY motif PID/PTB Fe65 X11/Lin-10/Mint mDab1 JIP JIP1b/IB1 G protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nishimoto I., Okamoto T., Matsuura Y., et al. (1993). Alzheimer amyloid protein precursor complexes with brain GTP-binding protein Go. Nature 362, 75–79.PubMedGoogle Scholar
  2. 2.
    Brouillet E., Trembleau A., Galanaud D., et al. (1999). The amyloid precursor protein interacts with Go heterotrimeric protein within a cell compartment specialized in signal transduction. J. Neurosci. 19, 1717–1727.PubMedGoogle Scholar
  3. 3.
    Chen W. J., Goldstein J. L., Brown M. S. (1990). NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J. Biol. Chem. 265, 3116–3123.PubMedGoogle Scholar
  4. 4.
    Lioubin M. N., Algate P. A., Tsai S., Carlberg K., Aebersold R., Rohrschneider L. R. (1996). p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev. 10, 1084–1095.PubMedGoogle Scholar
  5. 5.
    Kavanaugh W. M., Williams L. T. (1994). An alternative to SH2 domains for binding tyrosine-phosphorylated proteins. Science 266, 1862–1865.PubMedGoogle Scholar
  6. 6.
    Kavanaugh W. M., Turck C. W., Williams L. T. (1995). PTB domain binding to signaling proteins through a sequence motif containing phosphotyrosine. Science 268, 1177–1179.PubMedGoogle Scholar
  7. 7.
    Bork P., Margolis B. (1995). A phosphotyrosine interaction domain. Cell 80, 693–694.PubMedGoogle Scholar
  8. 8.
    Duilio A., Zambrano N., Mogavero A. R., Ammendola R., Cimino F., Russo T. (1991). A rat brain mRNA encoding a transcriptional activator homologous to the DNA binding domain of retroviral integrases. Nucl. Acids Res. 19, 5269–5274.PubMedGoogle Scholar
  9. 9.
    Fiore F., Zambrano N., Minopoli G., Donini V., Duilio A., Russo T. (1995). The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer’s amyloid precursor protein. J. Biol. Chem. 270, 30,853–30,856.Google Scholar
  10. 10.
    Guenette S. Y., Chen J., Jondro P. D., Tanzi R. E. (1996). Association of a novel human FE65-like protein with the cytoplasmic domain of the β-amyloid precursor protein. Proc. Natl. Acad. Sci. USA 93, 10,832–10,837.Google Scholar
  11. 11.
    Duilio A., Faraonio R., Minopoli G., Zambrano N., Russo T. (1998). Fe65L2: a new member of the Fe65 protein family interacting with the intracellular domain of the Alzheimer’s β-amyloid precursor protein. Biochem. J. 330, 513–519.PubMedGoogle Scholar
  12. 12.
    Zambrano N., Buxbaum J. D., Minopoli G., et al. (1997). Interaction of the phosphotyrosine interaction/phosphotyrosine binding-related domains of Fe65 with wild-type and mutant Alzheimer’s β-amyloid precursor proteins. J. Biol. Chem. 272, 6399–6405.PubMedGoogle Scholar
  13. 13.
    Zambrano N., Minopoli G., de Candia P., Russo T. (1998). The Fe65 adaptor protein interacts through its PID1 domain with the transcription factor CP2/LSF/LBP1. J. Biol. Chem. 273, 20,128–20,133.Google Scholar
  14. 14.
    Trommsdorff M., Borg J. P., Margolis B., Herz J. (1998). Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273, 33,556–33,560.Google Scholar
  15. 15.
    Kinoshita A., Whelan C. M., Smith C. J., et al. (2001). Demonstration by fluorescence resonance energy transfer of two sites of interaction between the low-density lipoprotein receptor-related protein and the amyloid precursor protein: role of the intracellular adapter protein Fe65. J. Neurosci. 21, 8354–8361.PubMedGoogle Scholar
  16. 16.
    Tanahashi H., Tabira T. (2002). Characterization of an amyloid precursor protein-binding protein Fe65L2 and its novel isoforms lacking phosphotyrosine-interaction domains. Biochem. J. 367, 687–695.PubMedGoogle Scholar
  17. 17.
    Chang Y., Tesco G., Jeong W. J., et al. (2003). Generation of the β-amyloid peptide and the amyloid precursor protein C-terminal fragment γ are potentiated by FE65L1. J. Biol. Chem. 278, 51,100–51,107.Google Scholar
  18. 18.
    Ermekova K. S., Zambrano N., Linn H., et al. (1997). The WW domain of neural protein FE65 interacts with proline-rich motifs in Mena, the mammalian homolog of Drosophila enabled. J. Biol. Chem. 272, 32,869–32,877.Google Scholar
  19. 19.
    Zambrano N., Bruni P., Minopoli G., et al. (2001). The β-amyloid precursor protein APP is tyrosine-phosphorylated in cells expressing a constitutively active form of the Abl protoncogene. J. Biol. Chem. 276, 19,787–19,792.Google Scholar
  20. 20.
    Sabo S. L., Ikin A. F., Buxbaum J. D., Greengard P. (2001). The Alzheimer amyloid precursor protein (APP) and FE65, an APP-binding protein, regulate cell movement. J. Cell. Biol. 153, 1403–1414.PubMedGoogle Scholar
  21. 21.
    Cao X., Sudhof T. C. (2001). A transcriptionally active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115–120.PubMedGoogle Scholar
  22. 22.
    Minopoli G., de Candia P., Bonetti A., Faraonio R., Zambrano N., Russo T. (2001). The β-amyloid precursor protein functions as a cytosolic anchoring site that prevents Fe65 nuclear translocation. J. Biol. Chem. 276, 6545–6550.PubMedGoogle Scholar
  23. 23.
    Kinoshita A., Shah T., Tangredi M. M., Strickland D. K., Hyman B. T. (2003). The intracellular domain of the low density lipoprotein receptor-related protein modulates transactivation mediated by amyloid precursor protein and Fe65. J. Biol. Chem. 278, 41,182–41,188.Google Scholar
  24. 24.
    Kimberly W. T., Zheng J. B., Guenette S. Y., Selkoe D. J. (2001). The intracellular domain of the β-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J. Biol. Chem. 276, 40,288–40,292.Google Scholar
  25. 25.
    Kinoshita A., Whelan C. M., Smith C. J., Berezovska O., Hyman B. T. (2002). Direct visualization of the gamma secretase-generated carboxyl-terminal domain of the amyloid precursor protein: association with Fe65 and translocation to the nucleus. J. Neurochem. 82, 839–847.PubMedGoogle Scholar
  26. 26.
    Wang B., Hu Q., Hearn M. G., et al. (2004). Isoform-specific knockout of FE65 leads to impaired learning and memory. J. Neurosci. Res. 75, 12–24.PubMedGoogle Scholar
  27. 27.
    Borg J. P., Ooi J., Levy E., Margolis B. (1996). The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol. Cell. Biol. 16, 6229–6241.PubMedGoogle Scholar
  28. 28.
    Tomita S., Ozaki T., Taru H., et al. (1999). Interaction of a neuron-specific protein containing PDZ domains with Alzheimer’s amyloid precursor protein. J. Biol. Chem. 274, 2243–2254.PubMedGoogle Scholar
  29. 29.
    Tanahashi H., Tabira T. (1999). X11L2, a new member of the X11 protein family, interacts with Alzheimer’s β-amyloid precursor protein. Biochem. Biophys. Res. Commun. 255, 663–667.PubMedGoogle Scholar
  30. 30.
    Zhang Z., Lee C. H., Mandiyan V., et al. (1997). Sequence-specific recognition of the internalization motif of the Alzheimer’s amyloid precursor protein by the X11 PTB domain. EMBO J. 16, 6141–6150.PubMedGoogle Scholar
  31. 31.
    Okamoto M., Sudhof T. C. (1998). Mint 3: a ubiquitous mint isoform that does not bind to munc18-1 or -2. Eur. J. Cell. Biol. 77, 161–165.PubMedGoogle Scholar
  32. 32.
    Borg J. P., Lopez-Figueroa M. O., de Taddeo-Borg M., et al. (1999). Molecular analysis of the X11-mLin-2/CASK complex in brain. J. Neurosci. 19, 1307–1316.PubMedGoogle Scholar
  33. 33.
    Okamoto M., Sudhof T. C. (1997). Mints, Munc18-interacting proteins in synaptic vesicle exocytosis. J. Biol. Chem. 272, 31,459–31,464.Google Scholar
  34. 34.
    Kim S. K., Horvitz H. R. (1990). The Caenorhabditis elegans gene lin-10 is broadly expressed while required specifically for the determination of vulval cell fates. Genes Dev. 4, 357–371.PubMedGoogle Scholar
  35. 35.
    Duclos F., Boschert U., Sirugo G., Mandel J. L., Hen R., Koenig M. (1993). Gene in the region of the Friedreich ataxia locus encodes a putative transmembrane protein expressed in the nervous system. Proc. Natl. Acad. Sci. USA 90, 109–113.PubMedGoogle Scholar
  36. 36.
    Rodius F., Duclos F., Wrogemann K., et al. (1994). Recombinations in individuals homozygous by descent localize the Friedreich ataxia locus in a cloned 450-kb interval. Am. J. Hum. Genet. 54, 1050–1059.PubMedGoogle Scholar
  37. 37.
    Simske J. S., Kaech S. M., Harp S. A., Kim S. K. (1996). LET-23 receptor localization by the cell junction protein LIN-7 during C. elegans vulval induction. Cell 85, 195–204.PubMedGoogle Scholar
  38. 38.
    Kaech S. M., Whitfield C. W., Kim S. K. (1998). The LIN-2/LIN-7/LIN-10 complex mediates basolateral membrane localization of the C. elegans EGF receptor LET-23 in vulval epithelial cells. Cell 94, 761–771.PubMedGoogle Scholar
  39. 39.
    Rongo C., Whitfield C. W., Rodal A., Kim S. K., Kaplan J. M. (1998). LIN-10 is a shared component of the polarized protein localization pathways in neurons and epithelia. Cell 94, 751–759.PubMedGoogle Scholar
  40. 40.
    Borg J. P., Straight S. W., Kaech S. M., et al. (1998). Identification of an evolutionarily conserved heterotrimeric protein complex involved in protein targeting. J. Biol. Chem. 273, 31,633–31,636.Google Scholar
  41. 41.
    Butz S., Okamoto M., Sudhof T. C. (1998). A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 94, 773–782.PubMedGoogle Scholar
  42. 42.
    Borg J. P., Yang Y., De Taddeo-Borg M., Margolis B., Turner R. S. (1998). The X11α protein slows cellular amyloid precursor protein processing and reduces Aβ40 and Aβ42 secretion. J. Biol. Chem. 273, 14,761–14,766.Google Scholar
  43. 43.
    Sastre M., Turner R. S., Levy E. (1998). X11 interaction with β-amyloid precursor protein modulates its cellular stabilization and reduces amyloid β-protein secretion. J. Biol. Chem. 273, 22,351–22,357.Google Scholar
  44. 44.
    Ho C. S., Marinescu V., Steinhilb M. L., Gaut J. R., Turner R. S., Stuenkel E. L. (2002). Synergistic effects of Munc18a and X11 proteins on amyloid precursor protein metabolism. J. Biol. Chem. 277, 27,021–27,028.Google Scholar
  45. 45.
    Mueller H. T., Borg J. P., Margolis B., Turner R. S. (2000). Modulation of amyloid precursor protein metabolism by X11α/Mint-1. A deletion analysis of protein-protein interaction domains. J. Biol. Chem. 275, 39,302–39,306.Google Scholar
  46. 46.
    Tomita S., Fujita T., Kirino Y., Suzuki T. (2000). PDZ domain-dependent suppression of NF-κB/p65-induced Aβ42 production by a neuron-specific X11-like protein. J. Biol. Chem. 275, 13,056–13,060.Google Scholar
  47. 47.
    Biederer T., Cao X., Sudhof T. C., Liu X. (2002). Regulation of APP-dependent transcription complexes by Mint/X11s: differential functions of Mint isoforms. J. Neurosci. 22, 7340–7351.PubMedGoogle Scholar
  48. 48.
    Lau K. F., McLoughlin D. M., Standen C. L., Irving N. G., Miller C. C. (2000). Fe65 and X11β co-localize with and compete for binding to the amyloid precursor protein. Neuroreport 11, 3607–3610.PubMedGoogle Scholar
  49. 49.
    Howell B. W., Lanier L. M., Frank R., Gertler F. B., Cooper J. A. (1999). The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids. Mol. Cell. Biol. 19, 5179–5188.PubMedGoogle Scholar
  50. 50.
    Homayouni R., Rice D. S., Sheldon M., Curran T. (1999). Disabled-1 binds to the cytoplasmic domain of amyloid precursor-like protein 1. J. Neurosci. 19, 7507–7515.PubMedGoogle Scholar
  51. 51.
    Gertler F. B., Bennett R. L., Clark M. J., Hoffmann F. M. (1989). Drosophila abl tyrosine kinase in embryonic CNS axons: a role in axonogenesis is revealed through dosage-sensitive interactions with disabled. Cell 58, 103–113.PubMedGoogle Scholar
  52. 52.
    Howell B. W., Gertler F. B., Cooper J. A. (1997). Mouse disabled (mDab1): a Src binding protein implicated in neuronal development. EMBO J. 16, 121–132.PubMedGoogle Scholar
  53. 53.
    Howell B. W., Hawkes R., Soriano P., Cooper J. A. (1997). Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389, 733–737.PubMedGoogle Scholar
  54. 54.
    D’Arcangelo G., Miao G. G., Chen S. C., Soares H. D., Morgan J. I., Curran T. (1995). A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719–723.PubMedGoogle Scholar
  55. 55.
    Sheldon M., Rice D. S., D’Arcangelo G., et al. (1997). Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389, 730–733.PubMedGoogle Scholar
  56. 56.
    Rice D. S., Sheldon M., D’Arcangelo G., Nakajima K., Goldowitz D., Curran T. (1998). Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125, 3719–3729.PubMedGoogle Scholar
  57. 57.
    Trommsdorff M., Gotthardt M., Hiesberger T., et al. (1999). Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689–701.PubMedGoogle Scholar
  58. 58.
    Hiesberger T., Trommsdorff M., Howell B. W., et al. (1999). Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24, 481–489.PubMedGoogle Scholar
  59. 59.
    D’Arcangelo G., Homayouni R., Keshvara L., Rice D. S., Sheldon M., Curran T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24, 471–479.PubMedGoogle Scholar
  60. 60.
    Senzaki K., Ogawa M., Yagi T. (1999). Proteins of the CNR family are multiple receptors for Reelin. Cell 99, 635–647.PubMedGoogle Scholar
  61. 61.
    Dulabon L., Olson E. C., Taglienti M. G., et al. (2000). Reelin binds α3β 1 integrin and inhibits neuronal migration. Neuron 27, 33–44.PubMedGoogle Scholar
  62. 62.
    Heber S., Herms J., Gajic V., et al. (2000). Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J. Neurosci. 20, 7951–7963.PubMedGoogle Scholar
  63. 63.
    Matsuda S., Yasukawa T., Homma Y., et al. (2001). c-Jun N-terminal kinase (JNK)-interacting protein-1b/islet-brain-1 scaffolds Alzheimer’s amyloid precursor protein with JNK. J. Neurosci. 21, 6597–6607.PubMedGoogle Scholar
  64. 64.
    Scheinfeld M. H., Roncarati R., Vito P., Lopez P. A., Abdallah M., D’Adamio L. (2002). Jun N-terminal kinase (JNK) interacting protein 1 (JIP1) binds the cytoplasmic domain of the Alzheimer’s β-amyloid precursor protein (APP). J. Biol. Chem. 277, 3767–3775.PubMedGoogle Scholar
  65. 65.
    Yasuda J., Whitmarsh A. J., Cavanagh J., Sharma M., Davis R. J. (1999). The JIP group of mitogen-activated protein kinase scaffold proteins. Mol. Cell. Biol. 19, 7245–7254.PubMedGoogle Scholar
  66. 66.
    Kelkar N., Gupta S., Dickens M., Davis R. J. (2000). Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3. Mol. Cell. Biol. 20, 1030–1043.PubMedGoogle Scholar
  67. 67.
    Meyer D., Liu A., Margolis B. (1999). Interaction of c-Jun amino-terminal kinase interacting protein-1 with p190 rhoGEF and its localization in differentiated neurons. J. Biol. Chem. 274, 35,113–35,118.Google Scholar
  68. 68.
    Stockinger W., Brandes C., Fasching D., et al. (2000). The reelin receptor ApoER2 recruits JNK-interacting proteins-1 and -2. J. Biol. Chem. 275, 25,625–25,632.Google Scholar
  69. 69.
    Gotthardt M., Trommsdorff M., Nevitt M. F., et al. (2000). Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J. Biol. Chem. 275, 25,616–25,624.Google Scholar
  70. 70.
    Xia Z., Dickens M., Raingeaud J., Davis R. J., Greenberg M. E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326–1331.PubMedGoogle Scholar
  71. 71.
    Kuan C. Y., Yang D. D., Samanta Roy D. R., Davis R. J., Rakic P., Flavell R. A. (1999). The JNK1 and JNK2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22, 667–676.PubMedGoogle Scholar
  72. 72.
    Yang D. D., Kuan C. Y., Whitmarsh A. J., et al. (1997). Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389, 865–870.PubMedGoogle Scholar
  73. 73.
    Dickens M., Rogers J. S., Cavanagh J., et al. (1997). A cytoplasmic inhibitor of the JNK signal transduction pathway. Science 277, 693–696.PubMedGoogle Scholar
  74. 74.
    Whitmarsh A. J., Cavanagh J., Tournier C., Yasuda J., Davis R. J. (1998). A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 281, 1671–1674.PubMedGoogle Scholar
  75. 75.
    Davis R. J. (2000). Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252.PubMedGoogle Scholar
  76. 76.
    Whitmarsh A. J., Davis R. J. (1998). Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem. Sci. 23, 481–485.PubMedGoogle Scholar
  77. 77.
    Kim I. J., Lee K. W., Park B. Y., et al. (1999). Molecular cloning of multiple splicing variants of JIP-1 preferentially expressed in brain. J. Neurochem. 72, 1335–1343.PubMedGoogle Scholar
  78. 78.
    Bonny C., Nicod P., Waeber G. (1998). IB1, a JIP-1-related nuclear protein present in insulinsecreting cells. J. Biol. Chem. 273, 1843–1846.PubMedGoogle Scholar
  79. 79.
    Mooser V., Maillard A., Bonny C., et al. (1999). Genomic organization, fine-mapping, and expression of the human islet-brain 1 (IB1)/c-Jun-amino-terminal kinase interacting protein-1 (JIP-1) gene. Genomics 55, 202–208.PubMedGoogle Scholar
  80. 80.
    Pellet J. B., Haefliger J. A., Staple J. K., et al. (2000). Spatial, temporal and subcellular localization of islet-brain 1 (IB1), a homologue of JIP-1, in mouse brain. Eur. J. Neurosci. 12, 621–632.PubMedGoogle Scholar
  81. 81.
    Thompson N. A., Haefliger J. A., Senn A., et al. (2001). Islet-brain1/JNK-interacting protein-1 is required for early embryogenesis in mice. J. Biol. Chem. 276, 27,745–27,748.Google Scholar
  82. 82.
    Whitmarsh A. J., Kuan C. Y., Kennedy N. J., et al. (2001). Requirement of the JIP1 scaffold protein for stress-induced JNK activation. Genes Dev. 15, 2421–2432.PubMedGoogle Scholar
  83. 83.
    Bowman A. B., Kamal A., Ritchings B. W., et al. (2000). Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103, 583–594.PubMedGoogle Scholar
  84. 84.
    Byrd D. T., Kawasaki M., Walcoff M., Hisamoto N., Matsumoto K., Jin Y. (2001). UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Neuron 32, 787–800.PubMedGoogle Scholar
  85. 85.
    Verhey K. J., Meyer D., Deehan R., et al. (2001). Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell. Biol. 152, 959–970.PubMedGoogle Scholar
  86. 86.
    Gunawardena S., Goldstein L. S. (2001). Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32, 389–401.PubMedGoogle Scholar
  87. 87.
    Kamal A., Stokin G. B., Yang Z., Xia C. H., Goldstein L. S. (2000). Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449–459.PubMedGoogle Scholar
  88. 88.
    Kamal A., Almenar-Queralt A., LeBlanc J. F., Roberts E. A., Goldstein L. S. (2001). Kinesinmediated axonal transport of a membrane compartment containing β-secretase and presenilin-1 requires APP. Nature 414, 643–648.PubMedGoogle Scholar
  89. 89.
    Matsuda S., Matsuda Y., D’Adamio L. (2003). Amyloid β protein precursor (AβPP), but not AβPP-like protein 2, is bridged to the kinesin light chain by the scaffold protein JNK-interacting protein 1. J. Biol. Chem. 278, 38,601–38,606.Google Scholar
  90. 90.
    Rohn T. T., Ivins K. J., Bahr B. A., Cotman C. W., Cribbs D. H. (2000). A monoclonal antibody to amyloid precursor protein induces neuronal apoptosis. J. Neurochem. 74, 2331–2342.PubMedGoogle Scholar
  91. 91.
    Sudo H., Jiang H., Yasukawa T., et al. (2000). Antibody-regulated neurotoxic function of cell surface β-amyloid precursor protein. Mol. Cell. Neurosci. 16, 708–723.PubMedGoogle Scholar
  92. 92.
    Mbebi C., See V., Mercken L., Pradier L., Muller U., Loeffler J. P. (2002). Amyloid precursor protein family-induced neuronal death is mediated by impairment of the neuroprotective calcium/calmodulin protein kinase IV-dependent signaling pathway. J. Biol. Chem. 277, 20,979–20,990.Google Scholar
  93. 93.
    Sudo H., Hashimoto Y., Niikura T., et al. (2001). Secreted Aβ does not mediate neurotoxicity by antibody-stimulated amyloid precursor protein. Biochem. Biophys. Res. Commun. 282, 548–556.PubMedGoogle Scholar
  94. 94.
    Hashimoto Y., Tsuji O., Niikura T., et al. (2003). Involvement of c-Jun N-terminal kinase in amyloid precursor protein-mediated neuronal cell death. J. Neurochem. 84, 864–877.PubMedGoogle Scholar
  95. 95.
    Hashimoto Y., Niikura T., Chiba T., et al. (2003). The cytoplasmic domain of Alzheimer’s amyloid-β protein precursor causes sustained apoptosis signal-regulating kinase 1/c-Jun NH2-terminal kinase-mediated neurotoxic signal via dimerization. J. Pharmacol. Exp. Ther. 306, 889–902.PubMedGoogle Scholar
  96. 96.
    Scheinfeld M. H., Ghersi E., Davies P., D’Adamio L. (2003). Amyloid β protein precursor is phosphorylated by JNK-1 independent of, yet facilitated by, JNK-interacting protein (JIP)-1. J. Biol. Chem. 278, 42,058–42,063.Google Scholar
  97. 97.
    Taru H., Kirino Y., Suzuki T. (2002). Differential roles of JIP scaffold proteins in the modulation of amyloid precursor protein metabolism. J. Biol. Chem. 277, 27,567–27,574.Google Scholar
  98. 98.
    Scheinfeld M. H., Matsuda S., D’Adamio L. (2003). JNK-interacting protein-1 promotes transcription of Aβ protein precursor but not Aβ precursor-like proteins, mechanistically different than Fe65. Proc. Natl. Acad. Sci. USA 100, 1729–1734.PubMedGoogle Scholar
  99. 99.
    Tarr P. E., Roncarati R., Pelicci G., Pelicci P. G., D’Adamio L. (2002). Tyrosine phosphorylation of the β-amyloid precursor protein cytoplasmic tail promotes interaction with Shc. J. Biol. Chem. 277, 16,798–16,804.Google Scholar
  100. 100.
    Ando K., Iijima K. I., Elliott J. I., Kirino Y., Suzuki T. (2001). Phosphorylation-dependent regulation of the interaction of amyloid precursor protein with Fe65 affects the production of β-amyloid. J. Biol. Chem. 276, 40,353–40,361.Google Scholar
  101. 101.
    Kesavapany S., Banner S. J., Lau K. F., et al. (2002). Expression of the Fe65 adapter protein in adult and developing mouse brain. Neuroscience 115, 951–960.PubMedGoogle Scholar
  102. 102.
    Sabo S. L., Lanier L. M., Ikin A. F., et al. (1999). Regulation of β-amyloid secretion by FE65, an amyloid protein precursor-binding protein. J. Biol. Chem. 274, 7952–7957.PubMedGoogle Scholar
  103. 103.
    Hu Q., Jin L. W., Starbuck M. Y., Martin G. M. (2000). Broadly altered expression of the mRNA isoforms of FE65, a facilitator of beta amyloidogenesis, in Alzheimer cerebellum and other brain regions. J. Neurosci. Res. 60, 73–86.PubMedGoogle Scholar
  104. 104.
    Delatour B., Mercken L., El Hachimi K. H., Colle M. A., Pradier L., Duyckaerts C. (2001). FE65 in Alzheimer’s disease: neuronal distribution and association with neurofibrillary tangles. Am. J. Pathol. 158, 1585–1591.PubMedGoogle Scholar
  105. 105.
    Hu Q., Kukull W. A., Bressler S. L., et al. (1998). The human FE65 gene: genomic structure and an intronic biallelic polymorphism associated with sporadic dementia of the Alzheimer type. Hum. Genet. 103, 295–303.PubMedGoogle Scholar
  106. 106.
    Hu Q., Cool B. H., Wang B., Hearn M. G., Martin G. M. (2002). A candidate molecular mechanism for the association of an intronic polymorphism of FE65 with resistance to very late onset dementia of the Alzheimer type. Hum. Mol. Genet. 11, 465–475.PubMedGoogle Scholar
  107. 107.
    Lambert J. C., Mann D., Goumidi L., et al. (2000). A FE65 polymorphism associated with risk of developing sporadic late-onset alzheimer’s disease but not with Aβ loading in brains. Neurosci. Lett. 293, 29–32.PubMedGoogle Scholar
  108. 108.
    Guenette S. Y., Bertram L., Crystal A., et al. (2000). Evidence against association of the FE65 gene (APBB1) intron 13 polymorphism in Alzheimer’s patients. Neurosci. Lett. 296, 17–20.PubMedGoogle Scholar
  109. 109.
    Cousin E., Hannequin D., Ricard S., et al. (2003). A risk for early-onset Alzheimer’s disease associated with the APBB1 gene (FE65) intron 13 polymorphism. Neurosci. Lett. 342, 5–8.PubMedGoogle Scholar
  110. 110.
    McLoughlin D. M., Irving N. G., Brownlees J., Brion J. P., Leroy K., Miller C. C. (1999). Mint2/X11-like colocalizes with the Alzheimer’s disease amyloid precursor protein and is associated with neuritic plaques in Alzheimer’s disease. Eur. J. Neurosci. 11, 1988–1994.PubMedGoogle Scholar
  111. 111.
    Brich J., Shie F. S., Howell B. W., et al. (2003). Genetic modulation of tau phosphorylation in the mouse. J. Neurosci. 23, 187–192.PubMedGoogle Scholar
  112. 112.
    Mudher A., Chapman S., Richardson J., et al. (2001). Dishevelled regulates the metabolism of amyloid precursor protein via protein kinase C/mitogen-activated protein kinase and c-Jun terminal kinase. J. Neurosci. 21, 4987–4995.PubMedGoogle Scholar
  113. 113.
    Schubert D., Cole G., Saitoh T., Oltersdorf T. (1989). Amyloid β protein precursor is a mitogen. Biochem. Biophys. Res. Commun. 162, 83–88.PubMedGoogle Scholar
  114. 114.
    Milward E. A., Papadopoulos R., Fuller S. J., et al. (1992). The amyloid protein precursor of Alzheimer’s disease is a mediator of the effects of nerve growth factor on neurite outgrowth. Neuron 9, 129–137.PubMedGoogle Scholar
  115. 115.
    Mattson M. P., Cheng B., Culwell A. R., Esch F. S., Liebergurg I., Rydel R. E. (1993). η-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease. Trends Neurosci. 16, 409–414.PubMedGoogle Scholar
  116. 116.
    Small D. H., Nurcombe V., Reed G., et al. (1994). A heparin-binding domain in the amyloid protein precursor of Alzheimer’s disease is involved in the regulation of neurite outgrowth. J. Neurosci. 14, 2117–2127.PubMedGoogle Scholar
  117. 117.
    Zhu X., Raina A. K., Rottkamp C. A., Aliev G., Perry G., Boux H., Smith M. A. (2001). Activation and redistribution of c-Jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease. J. Neurochem. 76, 435–441.PubMedGoogle Scholar
  118. 118.
    Savage M. J., Lin Y. G., Ciallella J. R., Flood D. G., Scott R. W. (2002). Activation of c-Jun N-terminal kinase and p38 in an Alzheimer’s disease model is associated with amyloid deposition. J. Neurosci. 22, 3376–3385.PubMedGoogle Scholar
  119. 119.
    Setou M., Nakagawa T., Seog D. H., Hirokawa N. (2000). Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796–1802.PubMedGoogle Scholar
  120. 120.
    Biederer T., Sudhof T. C. (2000). Mints as adaptors. Direct binding to neurexins and recruitment of munc18. J. Biol. Chem. 275, 39,803–39,806.Google Scholar
  121. 121.
    Cohen A. R., Woods D. F., Marfatia S. M., et al. (1998). Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells. J. Cell. Biol. 142, 129–138.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Masaoki Kawasumi
    • 1
  • Shuji Matsuda
    • 1
  • Masaaki Matsuoka
    • 1
  • Ikuo Nishimoto
    • 1
  1. 1.Department of Pharmacology and NeurosciencesKEIO University School of MedicineTokyoJapan

Personalised recommendations