Molecular Neurobiology

, Volume 30, Issue 1, pp 77–89 | Cite as

Perspectives on MAO-B in aging and neurological disease

Where do we go from here?
  • M. Jyothi Kumar
  • Julie K. Andersen
Article

Abstract

The catecholamine-oxidizing enzyme monoamine oxidase-B (MAO-B) has been hypothesized to be an important determining factor in the etiology of both normal aging and age-related neurological disorders such as Parkinson’s disease (PD). Catalysis of substrate by the enzyme produces H2O2 which is a primary originator of oxidative stress which in turn can lead to cellular damage. MAO-B increases with age as does predisposition towards PD which has also been linked to increased oxidative stress. Inhibition of MAO-B, along with supplementation of lost dopamine via L-DOPA, is one of the major antiparkinsonian therapies currently in use. In this review, we address several factors contributing to a possible role for MAO-B in normal brain aging and neurological disease and also discuss the use of MAO-B inhibitors as drug therapy for these conditions.

Index Entries

Monoamine oxidase B Parkinson’s disease aging free radicals deprenyl genetic polymorphisms mitochondrial dysfunction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kopin I.J. (1994) Monoamine oxidase and catecholamine metabolism. J. Neurol. Transm. Suppl. 41, 57–67.Google Scholar
  2. 2.
    Fowler J.S., Logan J., Wang G.J., Volkow N.D. (2003) Monoamine oxidase and cigarette smoking. Neurotoxicology 24, 75–82.PubMedCrossRefGoogle Scholar
  3. 3.
    Weyler W., Hsu Y.P., Breakefield X.O. (1990) Biochemistry and genetics of monoamine oxidase. Pharmacol. Ther. 47, 391–417.PubMedCrossRefGoogle Scholar
  4. 4.
    Singer T.P. (1995) The colorful past and bright future of monoamine oxidase research. Prog. Brain Res. 106, 1–22.PubMedGoogle Scholar
  5. 5.
    Richards J.G., Saura J., Luque J.M., et al. (1998) Monoamine oxidases: from brain maps to physiology and transgenics to pathophysiology. J. Neural. Transm. Suppl. 52, 173–187.PubMedGoogle Scholar
  6. 6.
    Shih J.C., Chen K., Ridd M.J. (1999) Monoamine oxidase: from genes to behavior. Annu. Rev. Neurosci. 22, 197–217.PubMedCrossRefGoogle Scholar
  7. 7.
    Bach A.W., Lan N.C., Johnson D.L., et al. (1988) cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc. Natl. Acad. Sci. USA. 85, 4934–4938.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen Z.Y., Powell J.F., Hsu Y.P., Breakefield X.O., Craig I.W. (1992) Organization of the human monoamine oxidase genes and long-range physical mapping around them. Genomics 14, 75–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Shih J.C., Grimsby J., Chen K., Zhu Q.S. (1993) Structure and promoter organization of the human monoamine oxidase A and B genes. J. Psychiatry Neurosci. 18, 25–32.PubMedGoogle Scholar
  10. 10.
    Levitt P., Pintar J.E., Breakefield X.O. (1982) Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc. Natl. Acad. Sci. USA 79, 6385–6389.PubMedCrossRefGoogle Scholar
  11. 11.
    Westlund K.N., Denney R.M., Kochersperger L.M., Rose R.M., Abell C.W. (1985) Distinct monoamine oxidase A and B populations in primate brain. Science 230, 181–183.PubMedCrossRefGoogle Scholar
  12. 12.
    Westlund K.N., Denney R.M., Rose R.M., Abell C.W. (1988) Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience 25, 439–456.PubMedCrossRefGoogle Scholar
  13. 13.
    Magyar K., Knoll J. (1977) Selective inhibition of the “B form” of monoamine oxidase. Pol. J. Pharmacol. Pharm. 29, 233–246.PubMedGoogle Scholar
  14. 14.
    Johnston J.P. (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem. Pharmacol. 17, 1285–1297.PubMedCrossRefGoogle Scholar
  15. 15.
    Youdim M.B., Riederer P. (1993) Dopamine metabolism and neurotransmission in primate brain in relationship to monoamine oxidase A and B inhibition. J. Neural. Transm. Gen. Sect. 91, 181–195.PubMedCrossRefGoogle Scholar
  16. 16.
    Vindis C., Seguelas M.H., Lanier S., Parini A., Cambon C. (2001) Dopamine induces ERK activation in renal epithelial cells through H2O2 produced by monoamine oxidase. Kidney Int. 59, 76–86.PubMedCrossRefGoogle Scholar
  17. 17.
    Coehn G., Farooqui R., Kesler N. (1997) Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow. Proc. Natl. Acad. Sci. USA 94, 4890–4894.CrossRefGoogle Scholar
  18. 18.
    Zhu Q.S., Grimsby J., Chen K., Shih J.C. (1992) Promoter organization and activity of human monoamine oxidase (MAO) A and B genes. J. Neurosci. 12, 4437–4446.PubMedGoogle Scholar
  19. 19.
    Ekblom J., Zhu Q.S., Chen K., Shih J.C. (1996) Monoamine oxidase gene transcription in human cell lines: treatment with psychoactive drugs and ethanol. J. Neural. Transm. Gen. Sect. 103, 681–692.CrossRefGoogle Scholar
  20. 20.
    Wong W.K., Chen K., Shih J.C. (2001) Regulation of human monoamine oxidase B gene by Sp1 and Sp3. Mol. Pharmacol. 59, 852–859.PubMedGoogle Scholar
  21. 21.
    Wong W.K., Qu X.M., Chen K., Shih J.C. (2002) Activation of human monoamine oxidase B gene expression by a protein kinase C MAPK signal transduction pathway involves c-Jun and Egr-1. J. Biol. Chem. 277, 22222–22230.PubMedCrossRefGoogle Scholar
  22. 22.
    Wong W.K., Chen K., Shih J.C. (2003) Decreased methylation and transcription repressor Sp3 upregulated human monoamine oxidase (MAO) B expression during Caco-2 differentiation. J. Biol. Chem. 268, 36227–36235.CrossRefGoogle Scholar
  23. 23.
    Ammendola R., Mesuraca M., Russo T., Cimino F. (1994) The DNA-binding efficiency of Sp1 is affected by redox changes. Eur. J. Biochem. 225, 483–489.PubMedCrossRefGoogle Scholar
  24. 24.
    Wu X., Bishopric N.H., Discher D.J., Murphy B.J., Webster K.A. (1996) Physical and functional sensitivity of zinc finger transcription factors to redox change. Mol. Cell. Biol. 16, 1035–1046.PubMedGoogle Scholar
  25. 25.
    Krones-Herzig A., Adamson E., Mercola D. (2003) Early growth response 1 protein, an upstream gatekeeper of the p53 tumor suppressor, controls replicative senescence. Proc. Natl. Acad. Sci. USA 100, 3233–3238.PubMedCrossRefGoogle Scholar
  26. 26.
    Fowler C.J., Wiberg A., Oreland L., Marcusson J., Winblad B. (1980) The effect of age on the activity and molecular properties of human brain monoamine oxidase. J. Neural. Transm. 49, 1–20.PubMedCrossRefGoogle Scholar
  27. 27.
    Galva M.D., Bondiolotti G.P., Olasmaa M., Picotti G.B. (1995) Effect of aging on lazabemide binding, monoamine oxidase activity and monoamine metabolites in human frontal cortex. J. Neural. Transm. Gen. Sect. 101, 83–94.PubMedCrossRefGoogle Scholar
  28. 28.
    Kornhuber J., Konradi C., Mack-Burkhardt F., Riederer P., Heinsen H., Beckmann H. (1989) Ontogenesis of monoamine oxidase-A and -B in the human brain frontal cortex. Brain Res. 499, 81–86.PubMedCrossRefGoogle Scholar
  29. 29.
    Sastre M., Garcia-Sevilla J.A. (1993) Opposite age-dependent changes of alpha 2A-adrenoceptors and nonadrenoceptor [3H]idazoxan binding sites (I2-imidazoline sites) in the human brain: strong correlation of 12 with monoamine oxidase-B sites. J. Neurochem. 61, 881–889.PubMedCrossRefGoogle Scholar
  30. 30.
    Strolin Benedetti M., Dostert P. (1989) Monoamine oxidase, brain ageing and degenerative diseases. Biochem. Pharmacol. 38, 555–561.PubMedCrossRefGoogle Scholar
  31. 31.
    Irwin I., Delanney L., Chan P., Sandy M.S., Di Monte D.A., Langston J.W. (1997) Nigrostriatal monoamine oxidase A and B in aging squirrel monkeys and C57BL/6 mice. Neurobiol. Aging. 18, 235–241.PubMedCrossRefGoogle Scholar
  32. 32.
    Cohen G. (1987) Monoamine oxidase, hydrogen peroxide, and Parkinson’s disease. Adv. Neurol. 45, 119–125.PubMedGoogle Scholar
  33. 33.
    Halliwell B., Gutteridge J.M.C. (1999) Free Radicals in Biology and Medicine, Third Ed., Oxford University Press, Oxford, pp. 246–350.Google Scholar
  34. 34.
    Soong N.W., Hinton D.R., Cortopassi G., Arnheim N. (1992) Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nat. Genet. 2, 318–323.PubMedCrossRefGoogle Scholar
  35. 35.
    Gerlach M., Youdim M.B., Riederer P. (1996) Pharmacology of selegiline. Neurology 47, S137–145.PubMedGoogle Scholar
  36. 36.
    Riederer P., Konradi C., Schay V., et al. (1987) Localization of MAO-A and MAO-B in human brain: a step in understanding the therapeutic action of L-deprenyl. Adv. Neurol. 45, 111–118.PubMedGoogle Scholar
  37. 37.
    Halliwell B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem. 59, 1609–1623.PubMedCrossRefGoogle Scholar
  38. 38.
    Raps S.P., Lai J.C., Hertz L., Cooper A.J. (1989) Glutathione is present in high concentrations in cultured astrocytes but not in cultured neurons. Brain Res. 493, 398–401.PubMedCrossRefGoogle Scholar
  39. 39.
    Sagara J.I., Miura K., Bannai S. (1993) Maintenance of neuronal glutathione by glial cells. J. Neurochem. 61, 1672–1676.PubMedCrossRefGoogle Scholar
  40. 40.
    Makar T.K., Nedergaard M., Preuss A., Gelbard A.S., Perumal A.S., Cooper A.J. (1994) Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: evidence that astrocytes play an important role in antioxidative processes in the brain. J. Neurochem. 62, 45–53.PubMedCrossRefGoogle Scholar
  41. 41.
    Kang Y., Oiao X., Jurma O., Knusel B., Andersen J.K. (1997) Cloning/brain localization of mouse glutamylcysteine synthetase heavy chain mRNA. Neuroreport 8, 2053–2060.PubMedCrossRefGoogle Scholar
  42. 42.
    Olanow C.W. (1993) A scientific rationale for protective therapy in Parkinson’s disease. J. Neural. Transm. Gen. Sect. 91, 161–180.PubMedCrossRefGoogle Scholar
  43. 43.
    Buckman T.D., Sutphin M.S., Mitrovic B. (1993) Oxidative stress in a clonal cell line of neuronal origin: effects of antioxidant enzyme modulation. J. Neurochem. 60, 2046–2058.PubMedCrossRefGoogle Scholar
  44. 44.
    Behl C., Davis J.B., Lesley R., Schubert D. (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77, 817–827.PubMedCrossRefGoogle Scholar
  45. 45.
    Whittemore E.R., Loo D.T., Cotman C.W. (1994) Exposure to hydrogen peroxide induces cell death via apoptosis in cultured rat cortical neurons. Neuroreport 5, 1485–1488.PubMedCrossRefGoogle Scholar
  46. 46.
    Wei Q., Yeung M., Jurma O.P., Andersen J.K. (1996) Genetic elevation of monoamine oxidase levels in dopaminergic PC12 cells results in increased free radical damage and sensitivity to MPTP. J. Neurosci. Res. 46, 666–673.PubMedCrossRefGoogle Scholar
  47. 47.
    Cohen G. (1990) Monoamine oxidase and oxidative stress at dopaminergic synapses. J. Neural. Transm. Suppl. 32, 229–238.PubMedGoogle Scholar
  48. 48.
    Cohen G. (1983) The pathobiology of Parkinson’s disease: biochemical aspects of dopamine neuron senescence. J. Neural. Transm. Suppl. 19, 89–103.PubMedGoogle Scholar
  49. 49.
    Fahn S., Cohen G. (1992) The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann. Neurol. 32, 804–812.PubMedCrossRefGoogle Scholar
  50. 50.
    Knoll J. (1986) In Advances in Neurology, vol. 45, Yahr M.D., Bergman, K.J., ed, Raven Press, New York, pp. 107–110.Google Scholar
  51. 51.
    Dexter D.T., Wells F.R., Lees A.J., et al. (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J. Neurochem. 52, 1830–1836.PubMedCrossRefGoogle Scholar
  52. 52.
    Dexter D.T., Carter C.J., Wells F.R., et al. (1989) Basal lipid peroxidation in substantia nigra is increased in Prkinson’s disease. J. Neurochem. 52, 381–389.PubMedCrossRefGoogle Scholar
  53. 53.
    Schapira A.H., Cooper J.M., Dexter D., Jenner P., Clark J.B., Marsden C.D. (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1, 1269.PubMedCrossRefGoogle Scholar
  54. 54.
    Mizuno Y., Matuda S., Yoshino H., Mori H., Hattori N., Ikebe S. (1994) An immunohistochemical study on alpha-ketoglutarate dehydrogenase complex in Parkinson’s disease. Ann. Neurol. 35, 204–210.PubMedCrossRefGoogle Scholar
  55. 55.
    Mizuno Y., Suzuki K., Ohta S. (1990) Postmortem changes in mitochondrial respiratory enzymes in brain and a preliminary observation in Parkinson’s disease. J. Neurol. Sci. 96, 49–57.PubMedCrossRefGoogle Scholar
  56. 56.
    Gibson G.E., Kingsbury A.E., Xu H., et al. (2003) Deficits in a tricarboxylic acid cycle enzyme in brains from patients with Parkinson’s disease. Neurochem. Int. 43, 129–135.PubMedCrossRefGoogle Scholar
  57. 57.
    MacNaught K.S., Altomare C., Cellamare S., et al. (1995) Inhibition of alpha-ketoglutarate dehydrogenase by isoquinoline derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neuroreport 6, 1105–1108.CrossRefGoogle Scholar
  58. 58.
    Beal M.F. (1992) Does impairment of energy metabolism result in excitotoxic neuronal death inneurodegenerative illnesses? Ann. Neurol. 31, 119–130.PubMedCrossRefGoogle Scholar
  59. 59.
    Hirsch E.C. (1992) Why are nigral catecholaminergic neurons more vulnerable than other cells in Parkinson’s disease? Ann. Neurol. 32 Suppl, S88–93.PubMedCrossRefGoogle Scholar
  60. 60.
    Kumar M.J., Nicholls D.G., Andersen J.K. (2003) Oxidative a-ketoglutarate dehydrogenase inhibition via subtle elevations in monoamine oxidase B levels results in loss of spare respiratory capacity: Implications for Parkinson’s disease. J. Biol. Chem. 278, 46,432–46,439.Google Scholar
  61. 61.
    Goudreau J.L., Maraganore D.M., Farrer M.J., et al. (2002) Case-control study of dopamine transporter-1, monoamine oxidase-B, and catechol-O-methyl transferase polymorphisms in Parkinson’s disease. Mov. Disord. 17, 1305–1311.PubMedCrossRefGoogle Scholar
  62. 62.
    Kurth J.H., Kurth M.C., Poduslo S.E., Schwankhaus J.D. (1993) Association of a monoamine oxidase B allele with Parkinson’s disease. Ann. Neurol. 33, 368–372.PubMedCrossRefGoogle Scholar
  63. 63.
    Costa P., Checkoway H., Levy D., et al. (1997) Association of a polymorphism in intron 13 of the monoamine oxidase B gene with Parkinson disease. Am. J. Med. Genet. 74, 154–156.PubMedCrossRefGoogle Scholar
  64. 64.
    Tan E.K., Khajavi M., Thornby J.I., Nagamitsu S., Jankovic J., Ashizawa T. (2000) Variability and validity of polymorphism association studies in Parkinson’s disease. Neurology 55, 533–538.PubMedGoogle Scholar
  65. 65.
    Ho S.L., Kapadi A.L., Ramsden D.B., Williams A.C. (1995) An allelic association study of monoamine oxidase B in Parkinson’s disease. Ann. Neurol. 37, 403–405.PubMedCrossRefGoogle Scholar
  66. 66.
    Checkoway H., Farin F.M., Costa-Mallen P., Kirchner S.C., Costa L.G. (1998) Genetic polymorphisms in Parkinson’s disease. Neurotoxicology 19, 635–643.PubMedGoogle Scholar
  67. 67.
    Shao M., Liu Z., Tao E., Chen B. (2001) [Poly-morphism of MAO-B gene and NAD(P)H: quinone oxidoreductase gene in Parkinson’s disease]. Zhonghua. Yi. Xue. Yi. Chuan. Xue. Za. Zhi. 18, 122–124.PubMedGoogle Scholar
  68. 68.
    Hernan M.A., Checkoway H., O’Brien R., et al. (2002) MAO-B intron 13 and COMT codon 158 polymorphisms, cigarette smoking, and the risk of PD. Neurology 58, 1381–1387.PubMedGoogle Scholar
  69. 69.
    Saunders-Pullman R. (2003) Estrogens and Parkinson disease: neuroprotective, symptomatic, neither, or both? Endocrine 21, 81–87.PubMedCrossRefGoogle Scholar
  70. 70.
    Sawada H., Shimohama S. (2003) Estrogens and Parkinson disease: novel approach for neuroprotection. Endocrine 21, 77–79.PubMedCrossRefGoogle Scholar
  71. 71.
    Horstink M.W., Strijks E., Dluzen D.E. (2003) Estrogen and Parkinson’s disease. Adv. Neurol. 91, 107–114.PubMedGoogle Scholar
  72. 72.
    Kelada S.N., Costa-Mallen P., Costa L.G., et al. (2002) Gender difference in the interaction of smoking and monoamine oxidase B intron 13 genotype in Parkinson’s disease. Neurotoxicology 23, 515–519.PubMedCrossRefGoogle Scholar
  73. 73.
    Langston J.W., Ballard P., Tetrud J.W., Irwin I. (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980.PubMedCrossRefGoogle Scholar
  74. 74.
    Langston J.W., Ballard P.A., Jr. (1983) Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N. Engl. J. Med. 309, 310.PubMedGoogle Scholar
  75. 75.
    Langston J.W., Irwin I., Langston E.B., Forno L.S. (1984) Pargyline prevents MPTP-induced parkinsonism in primates. Science 225, 1480–1482.PubMedCrossRefGoogle Scholar
  76. 76.
    Langston J.W., Irwin I. (1986) MPTP: current concepts and controversies. Clin. Neuropharmacol. 9, 485–507.PubMedCrossRefGoogle Scholar
  77. 77.
    Calne D.B., Langston J.W. (1983) Aetiology of Parkinson’s disease. Lancet 2, 1457–1459.PubMedCrossRefGoogle Scholar
  78. 78.
    Ebadi M., Sharma S., Shavali S., El Refaey H. (2002) Neuroprotective actions of selegiline. J. Neurosci. Res. 67, 285–289.PubMedCrossRefGoogle Scholar
  79. 79.
    Langston J.W., Tanner C.M. (2000) Selegiline and Parkinson’s disease: it’s deja vu-again. Neurology 55, 1770–1771.PubMedGoogle Scholar
  80. 80.
    Knoll J. (1995) Rationale for (-)deprenyl (selegiline) medication in Parkinson’s disease and in prevention of age-related nigral changes. Biomed. Pharmacother 49, 187–195.PubMedCrossRefGoogle Scholar
  81. 81.
    Wu R.M., Mohanakumar K.P., Murphy D.L., Chiueh C.C. (1994) Antioxidant mechanism and protection of nigral neurons against MPP+ toxicity by deprenyl (selegiline). Ann. N. Y. Acad. Sci. 738, 214–221.PubMedCrossRefGoogle Scholar
  82. 82.
    Tatton W.G., Greenwood C.E. (1991) Rescue of dying neurons: a new action for deprenyl in MPTP parkinsonism. J. Neurosci. Res. 30, 666–672.PubMedCrossRefGoogle Scholar
  83. 83.
    Tetrud J.W., Langston J.W. (1989) The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science 245, 519–522.PubMedCrossRefGoogle Scholar
  84. 84.
    Birkmayer W., Riederer P., Youdim M.B., Linauer W. (1975) The potentiation of the anti akinetic effect after L-dopa treatment by an inhibitor of MAO-B, Deprenil. J. Neural. Transm. 36, 303–326.PubMedCrossRefGoogle Scholar
  85. 85.
    Birkmayer W., Knoll J., Riederer P., Youdim M.B., Hars V., Marton J. (1985) Increased life expectancy resulting from addition of L-deprenyl to Madopar treatment in Parkinson’s disease: a longterm study. J. Neural. Transm. 64, 113–127.PubMedCrossRefGoogle Scholar
  86. 86.
    Lees A.J., Shaw K.M., Kohout L.J., et al. (1977) Deprenyl in Parkinson’s disease. Lancet 2, 791–795.PubMedCrossRefGoogle Scholar
  87. 87.
    Brannan T., Yahr M.D. (1995) Comparative study of selegiline plus L-dopa-carbidopa versus L-dopa-carbidopa alone in the treatment of Parkinson’s disease. Ann. Neurol. 37, 95–98.PubMedCrossRefGoogle Scholar
  88. 88.
    Mahmood I. (1997) Clinical pharmacokinetics and pharmacodynamics of selegiline. An update. Clin. Pharmacokinet. 33, 91–102.PubMedGoogle Scholar
  89. 89.
    Deleu D., Northway M.G., Hanssens Y. (2002) Clinical pharmacokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson’s disease. Clin. Pharmacokinet 41, 261–309.PubMedCrossRefGoogle Scholar
  90. 90.
    Kitani K., Minami C., Isobe K., et al. (2002) Why (-)deprenyl prolongs survivals of experimental animals: increase of anti-oxidant enzymes in brain and other body tissues as well as mobilization of various humoral factors may lead to systemic anti-aging effects. Mech. Ageing Dev. 123, 1087–1100.PubMedCrossRefGoogle Scholar
  91. 91.
    Carrillo M.C., Kitani K., Kanai S., Sato Y., Ivy G.O., Miyasaka K. (1996) Long term treatment with (-)deprenly reduces the optimal dose as well as the effective dose range for increasing antioxidant enzyme activities in old mouse brain. Life Sci. 59, 1047–1057.PubMedCrossRefGoogle Scholar
  92. 92.
    Thiffault C., Aumont N., Quirion R., Poirier J. (1995) Effect of MPTP and L-deprenyl on antioxidant enzymes and lipid peroxidation levels in mouse brain. J. Neurochem. 65, 2725–2733.PubMedCrossRefGoogle Scholar
  93. 93.
    de la Cruz C.P., Revilla E., Steffen V., Rodriguez-Gomez J.A., Cano J., Machado A. (1996) Protection of the aged substantia nigra of the rat against oxidative damage by (-)-deprenyl. Br. J. Phrmacol. 117, 1756–1760.Google Scholar
  94. 94.
    Tatton W., Chalmers-Redman R., Tatton N. (2003) Neuroprotection by deprenyl and other propargylamines: glyceraldehyde-3-phosphate dehydrogenase rather than monoamine oxidase B. J. Neural. Transm. 110, 509–515.PubMedCrossRefGoogle Scholar
  95. 95.
    Muralikrishnan D., Samantaray S., Mohanakumar K.P. (2003) D-deprenyl protects nigrostriatal neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity. Synapse 50, 7–13.PubMedCrossRefGoogle Scholar
  96. 96.
    Finberg J.P., Lamensdorf I., Commissiong J.W., Youdim M.B. (1996) Pharmacology and neuroprotective properties of rasagiline. J. Neural. Transm. Suppl. 48, 95–101.PubMedGoogle Scholar
  97. 97.
    Parkinson Study Group (2002) A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch. Neurol. 59, 1937–1943.CrossRefGoogle Scholar
  98. 98.
    Da Prada M., Kettler R., Keller H.H., et al. (1990) From moclobemide to Ro 19-6327 and Ro 41-1049: the development of a new class of reversible, selective MAO-A and MAO-B inhibitors. J. Neural. Transm. Suppl. 29, 279–292.PubMedGoogle Scholar
  99. 99.
    (1996) Effect of lazabemide on the progression of disability in early Parkinson’s disease. The Parkinson Study Group. Ann. Neurol. 40, 99–107.Google Scholar
  100. 100.
    Thomas T. (2000) Monoamine oxidase-B inhibitors in the treatment of Alzheimer’s disease. Neurobiol. Aging. 21, 343–348.PubMedCrossRefGoogle Scholar
  101. 101.
    Youdim M.B., Weinstock M. (2001) Molecular basis of neuroprotective activities of rasagiline and the anti-Alzheimer drug TV3326 [(N-propargyl-(3R)aminoindan-5-YL)-ethyl methyl carbamate]. Cell. Mol. Neurobiol. 21, 555–573.PubMedCrossRefGoogle Scholar
  102. 102.
    Berlin I., Anthenelli R.M. (2001) Monoamine oxidases and tobacco smoking. Int. J. Neuropsychopharmacol. 4, 33–42.PubMedCrossRefGoogle Scholar
  103. 103.
    Fowler J.S., Volkow N.D., Wang G.J., et al. (1996) Inhibition of monoamine oxidase B in the brains of smokers. Nature 379, 733–736.PubMedCrossRefGoogle Scholar
  104. 104.
    Khalil A.A., Steyn S., Castagnoli N., Jr. (2000) Isolation and characterization of a monoamine oxidase inhibitor from tobacco leaves. Chem. Res. Toxicol. 13, 31–35.PubMedCrossRefGoogle Scholar
  105. 105.
    Hauptmann N., Shih J.C. (2001) 2-Naphthylamine, a compound found in cigarette smoke, decreases both monoamine oxidase A and B catalytic activity. Life Sci. 68, 1231–1241.PubMedCrossRefGoogle Scholar
  106. 106.
    Castagnoli K.P., Steyn S.J., Petzer J.P., Van der Schyf C.J., Castagnoli N., Jr. (2001) Neuroprotection in the MPTP Parkinsonian C57BL/6 mouse model by a compound isolated from tobacco. Chem. Res. Toxicol. 14, 523–527.PubMedCrossRefGoogle Scholar
  107. 107.
    Mendez-Alvarez E., Soto-Otero R., Sanchez-Sellero I., Lopez-Rivadulla Lamas M. (1997) Inhibition of brain monoamine oxidase by adducts of 1,2,3,4-tetrahydroisoquinoline with components of cigarette smoke. Life Sci. 60, 1719–1727.PubMedCrossRefGoogle Scholar
  108. 108.
    Finali G., Piccirilli M., Oliani C., Piccinin G.L. (1992) Alzheimer-type dementia and verbal memory performances: influence of selegiline therapy. Ital. J. Neurol. Sci. 13, 141–148.PubMedCrossRefGoogle Scholar
  109. 109.
    Mangoni A., Grassi M.P., Frattola L., et al. (1991) Effects of a MAO-B inhibitor in the treatment of Alzheimer disease. Eur. Neurol. 31, 100–107.PubMedGoogle Scholar
  110. 110.
    Finali G., Piccirilli M., Oliani C., Piccinin G.L. (1991) L-deprenyl therapy improves verbal memory in amnesic Alzheimer patients. Clin. Neuropharmacol. 14, 523–536.PubMedCrossRefGoogle Scholar
  111. 111.
    Knoll J. (2000) (-)Deprenyl (Selegiline): past, present and future. Neurobiology (Bp). 8, 179–199.Google Scholar
  112. 112.
    Gottfries C.G., Adolfsson R., Aquilonius S.M., et al. (1983) Biochemical changes in dementia disorders of Alzheimer type (AD/SDAT). Neurobiol. Aging. 4, 261–271.PubMedCrossRefGoogle Scholar
  113. 113.
    Schneider L.S., Severson J.A., Chui H.C., Pollock V.E., Sloane R.B., Fredrickson E.R. (1988) Platelet tritiated imipramine binding and MAO activity in Alzheimer’s disease patients with agitation and delusions. Psychiatry Res. 25, 311–322.PubMedCrossRefGoogle Scholar
  114. 114.
    Emilsson L., Saetre P., Balciuniene J., Castensson A., Cairns N., Jazin E.E. (2002) Increased monoamine oxidase messenger RNA expression levels in frontal cortex of Alzheimer’s disease patients. Neurosci. Lett. 326, 56–60.PubMedCrossRefGoogle Scholar
  115. 115.
    Kennedy B.P., Ziegler M.G., Alford M., Hansen L.A., Thal L.J., Masliah E. (2003) Early and persistent alterations in prefrontal cortex MAO-A and B in Alzheimer’s disease. J. Neural. Transm. 110, 789–801.PubMedGoogle Scholar
  116. 116.
    Oreland L., Gottfries C.G. (1986) Brain and brain monoamine oxidase in aging and in dementia of Alzheimer’s type. Prog. Neuropsychopharmacol Biol. Psychiatry. 10, 533–540.PubMedCrossRefGoogle Scholar
  117. 117.
    Parnetti L., Mecocci P., Reboldi G.P., et al. (1992) Platelet MAO-B activity and vitamin B12 in old age dementias. Mol. Chem. Neuropathol. 16, 23–32.PubMedCrossRefGoogle Scholar
  118. 118.
    Nakamura S., Kawamata T., Akiguchi I., Kameyama M., Nakamura N., Kimura H. (1990) Expression of monoamine oxidase B activity in astrocytes of senile plaques. Acta. Neuropathol. (Berl). 80, 419–425.CrossRefGoogle Scholar
  119. 119.
    Reinikainen K.J., Paljarvi L., Halonen T., et al. (1988) Dopaminergic system and monoamine oxidase-B activity in Alzheimer’s disease. Neurobiol. Aging. 9, 245–252.PubMedCrossRefGoogle Scholar
  120. 120.
    Gottfries C.G. (1990) Neurochemical aspects on aging and diseases with cognitive impairment. J. Neurosci. Res. 27, 541–547.PubMedCrossRefGoogle Scholar
  121. 121.
    Birks J., Flicker L. (2003) Selegiline for Alzheimer’s disease. Cochrane Database Syst. Rev. CD000442.Google Scholar
  122. 122.
    Heinonen E.H., Savijarvi M., Kotila M., Hajba A., Scheinin M. (1993) Effects of monoamine oxidase inhibition by selegiline on concentrations of noradrenaline and monoamine metabolites in CSF of patients with Alzheimer’s disease. J. Neural. Transm. Park. Dis. Dement. Sect. 5, 193–202.PubMedCrossRefGoogle Scholar
  123. 123.
    Piccinin G.L., Finali G., Piccirilli M. (1990) Neuropsychological effects of L-deprenyl in Alzheimer’s type dementia. Clin. Neuropharmacol. 13, 147–163.PubMedCrossRefGoogle Scholar
  124. 124.
    Finali G., Piccirilli M., Piccinin G.L. (1994) Neuropsychological correlates of L-deprenyl therapy in idiopathic parkinsonism. Prog. Neuropsychopharmacol. Biol. Psychiatry. 18, 115–128.PubMedCrossRefGoogle Scholar
  125. 125.
    Martignoni E., Bono G., Blandini F., Sinforiani E., Merlo P., Nappi G. (1991) Monoamines and related metabolite levels in the cerebrospinal fluid of patients with dementia of Alzheimer type. Influence of treatment with L-deprenyl. J. Neural. Transm. Park. Dis. Dement. Sect. 3, 15–25.PubMedCrossRefGoogle Scholar
  126. 126.
    Czurko A., Faludi B., Karadi Z., Vida I., Niedetzky C., Knoll J., Lenard L. (1995) Responses of forebrain neurons to the MAO-B blocker L-deprenyl. Brain Res. Bull. 36, 241–249.PubMedCrossRefGoogle Scholar
  127. 127.
    Suzuki T., Akaike N., Ueno K., Tanaka Y., Himori N. (1995) MAO inhibitors, clorgyline and lazabemide, prevent hydroxyl radical generation caused by brain ischemia/reperfusion in mice. Pharmacology 50, 357–362.PubMedCrossRefGoogle Scholar
  128. 128.
    Knollema S., Aukema W., Hom H., Korf J., ter Horst G.J. (1995) L-deprenyl reduces brain damage in rats exposed to transient hypoxia-ischemia. Stroke 26, 1883–1887.PubMedGoogle Scholar
  129. 129.
    Semkova I., Wolz P., Schilling M., Krieglstein J. (1996) Selegiline enhances NGF synthesis and protects central nervous system neurons from excitotoxic and ischemic damage. Eur. J. Pharmacol. 315, 19–30.PubMedCrossRefGoogle Scholar
  130. 130.
    Jolkkonen J., Kauppinen R., Nyman L., Haapalinna A., Sivenius J. (2000) MAO-B inhibition by a single dose of l-deprenyl or lazabemide does not prevent neuronal damage following focal cerebral ischaemia in rats. Pharmacol. Toxicol. 87, 242–245.PubMedCrossRefGoogle Scholar
  131. 131.
    Holschneider D.P., Scremin O.U., Huynh L., Chen K., Shih J.C. (1999) Lack of protection from ischemic injury of monoamine oxidase B-deficient mice following middle cerebral artery occlusion. Neurosci. Lett. 259, 161–164.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • M. Jyothi Kumar
    • 1
  • Julie K. Andersen
    • 1
  1. 1.Buck Institute for Age ResearchNovato

Personalised recommendations