Molecular Neurobiology

, Volume 30, Issue 1, pp 35–47

The role of BETA2/NeuroD1 in the development of the nervous system



BETA2/NeuroD1 is a member of the basic helix-loop-helix (bHLH) transcription factor family, which has been shown to play a major role in development of the nervous system and formation of the endocrine system. Gain-of-function studies have indicated that BETA2/NeuroD1 is important for the neurogenesis of Xenopus embryos and several neurogenic cell lines. Disruption of the gene encoding BETA2/NeuroD1 leads to severe abnormalities of the developing mouse central nervous system as well as the peripheral nervous system. The focus of this article is on the recent progress in understanding the role of BETA2/NeuroD1 in the development of the nervous system.

Index Entries

BETA2 NeuroD1 bHLH CNS PNS neurogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murre C., McCaw P.S., and Baltimore D. (1989) A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughter-less, MyoD, and myc proteins. Cell 56, 777–783.PubMedCrossRefGoogle Scholar
  2. 2.
    Jan Y.N. and Jan L.Y. (1993) HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell 75, 827–830.PubMedCrossRefGoogle Scholar
  3. 3.
    Jan Y.N. and Jan L.Y. (1990) Genes required for specifying cell fates in Drosophila embryonic sensory nervous system. Trends Neurosci. 13, 493–498.PubMedCrossRefGoogle Scholar
  4. 4.
    Jarman A.P., Grau Y., Jan L.Y., and Jan Y.N. (1993) atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell 73, 1307–1321.PubMedCrossRefGoogle Scholar
  5. 5.
    Akazawa C., Ishibashi M., Shimizu C., Nakanishi S., and Kageyama R. (1995) A mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a possitive transcriptional regulator expressed in the developing nervous system. J. Biol. Chem. 270, 8730–8738.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee J.E., Hollenberg S.M., Snider L., Turner D.L., Lipnick N., and Weintraub H. (1995) Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268, 836–844.PubMedCrossRefGoogle Scholar
  7. 7.
    Naya F.J., Stellrecht C.M., and Tsai M.J. (1995) Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev. 9, 1009–1019.PubMedCrossRefGoogle Scholar
  8. 8.
    Ma Q., Kintner C., and Anderson D.J. (1996) Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87, 43–52.PubMedCrossRefGoogle Scholar
  9. 9.
    Poulin G., Turgeon B., and Drouin J. (1997) NeuroD1/beta2 contributes to cell-specific transcription of the proopiomelanocortin gene. Mol. Cell Biol. 17, 6673–6682.PubMedGoogle Scholar
  10. 10.
    Sharma S., Jhala U.S., Johnson T., Ferreri K., Leonard J., and Montminy M. (1997) Hormonal regulation of an islet-specific enhancer in the pancreatic homeobox gene STF-1. Mol. Cell Biol. 17, 2598–2604.PubMedGoogle Scholar
  11. 11.
    Mutoh H., Fung B.P., Naya F.J., Tsai M.J., Nishitani J., and Leiter A.B. (1997) The basic helixloop-helix transcription factor BETA2/NeuroD is expressed in mammalian enteroendocrine cells and activates secretin gene expression. Proc. Natl. Acad. Sci. USA 94, 3560–3564.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim J.W., Seghers V., Cho J.H., Kang Y., Kim S., Ryu Y., et al. (2002) Transactivation of the mouse sulfonylurea receptor I gene by BETA2/NeuroD. Mol. Endocrinol. 16, 1097–1107.PubMedCrossRefGoogle Scholar
  13. 13.
    Noma T., Yoon Y.S., and Nakazawa A. (1999) Overexpression of NeuroD in PC12 cells alters morphology and enhances expression of the adenylate kinase isozyme 1 gene. Brain Res. Mol. Brain Res. 67, 53–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Konishi Y., Ohkawa N., Makino Y., Ohkubo H., Kageyama R., Furuichi T., et al. (1999) Transcriptional regulation of mouse type 1 inositol 1,4,5-trisphosphate receptor gene by NeuroD-related factor. J. Neurochem. 72, 1717–1724.PubMedCrossRefGoogle Scholar
  15. 15.
    Pozzoli O., Bosetti A., Croci L., Consalez G.G., and Vetter M.L. (2001) Xebf3 is a regulator of neuronal differentiation during primary neurogenesis in Xenopus. Dev. Biol. 233, 495–512.PubMedCrossRefGoogle Scholar
  16. 16.
    Hutcheson D.A. and Vetter M.L. (2001) The bHLH factors Xath5 and XNeuroD can upregulate the expression of XBrn3d, a POU-homeodomain transcription factor. Dev. Biol. 232, 327–338.PubMedCrossRefGoogle Scholar
  17. 17.
    Naya F.J., Huang H.P., Qiu Y., Mutoh H., DeMayo F.J., Leiter A.B., et al. (1997) Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 11, 2323–2334.PubMedGoogle Scholar
  18. 18.
    Mutoh H., Naya F.J., Tsai M.J., and Leiter A.B. (1998) The basic helix-loop-helix protein BETA2 interacts with p300 to coordinate differentiation of secretin-expressing enteroendocrine cells. Genes Dev. 12, 820–830.PubMedGoogle Scholar
  19. 19.
    Liu M., Pleasure S.J., Collins A.E., Noebels J.L., Naya F.J., Tsai M.J., et al. (2000) Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proc. Natl. Acad. Sci. USA 97, 865–870.PubMedCrossRefGoogle Scholar
  20. 20.
    Miyata T., Maeda T., and Lee J.E. (1999) NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev. 13, 1647–1652.PubMedGoogle Scholar
  21. 21.
    Liu M., Pereira F.A., Price S.D., Chu M.J., Shope C., Himes D., et al. (2000) Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev. 14, 2839–2854.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim W.Y., Fritzsch B., Serls A., Bakel L.A., Huang E.J., Reichardt L.F., et al. (2001) NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development 128, 417–426.PubMedGoogle Scholar
  23. 23.
    Pennesi M.E., Cho J.H., Yang Z., Wu S.H., Zhang J., Wu S.M., et al. (2003) BETA2/NeuroD1 null mice: a new model for transcription factor-dependent photoreceptor degeneration. J. Neurosci. 23, 453–461.PubMedGoogle Scholar
  24. 24.
    Zimmerman K., Shih J., Bars J., Collazo A., and Anderson D.J. (1993) XASH-3, a novel Xenopus achaete-scute homolog, provides an early marker of planar neural induction and position along the mediolateral axis of the neural plate. Development 119, 221–232.PubMedGoogle Scholar
  25. 25.
    Sasai Y., Kageyama R., Tagawa Y., Shigemoto R., and Nakanishi S. (1992) Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev. 6, 2620–2634.PubMedCrossRefGoogle Scholar
  26. 26.
    Kageyama R., Sasai Y., Akazawa C., Ishibashi M., Takebayashi K., Shimizu C., et al. (1995) Regulation of mammalian neural development by helix-loop-helix transcription factors. Crit. Rev. Neurobiol. 9, 177–188.PubMedGoogle Scholar
  27. 27.
    Kageyama R., Ishibashi M., Takebayashi K., and Tomita K. (1997) bHLH transcription factors and mammalian neuronal differentiation. Int. J. Biochem. Cell Biol. 29, 1389–1399.PubMedCrossRefGoogle Scholar
  28. 28.
    Lee J.E. (1997) NeuroD and neurogenesis. Dev. Neurosci. 19, 27–32.PubMedGoogle Scholar
  29. 29.
    Ishibashi M., Ang S.L., Shiota K., Nakanishi S., Kageyama R., and Guillemot F. (1995) Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev. 9, 3136–3148.PubMedCrossRefGoogle Scholar
  30. 30.
    Tomita K., Ishibashi M., Nakahara K., Ang S.L., Nakanishi S., Guillemot F., et al. (1996) Mammalian hairy and Enhancer of split homolog 1 regulates differentiation of retinal neurons and is essential for eye morphogenesis. Neuron 16, 723–734.PubMedCrossRefGoogle Scholar
  31. 31.
    Helms A.W., Gowan K., Abney A., Savage T., and Johnson J.E. (2001) Overexpression of MATH1 disrupts the coordination of neural differentiation in cerebellum development. Mol. Cell Neurosci. 17, 671–682.PubMedCrossRefGoogle Scholar
  32. 32.
    Ma Q., Chen Z., del Barco Barrantes I., de la Pompa J.L., and Anderson D.J. (1998) neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20, 469–482.PubMedCrossRefGoogle Scholar
  33. 33.
    Roztocil T., Matter-Sadzinski L., Alliod C., Ballivet M., and Matter J.M. (1997) NeuroM, a neural helix-loop-helix transcription factor, defines a new transition stage in neurogenesis. Development 124, 3263–3272.PubMedGoogle Scholar
  34. 34.
    Anderson D.J. (1995) Neural development. Spinning skin into neurons. Curr. Biol. 5, 1235–1238.PubMedCrossRefGoogle Scholar
  35. 35.
    Lee J.K., Cho J.H., Hwang W.S., Lee Y.D., Reu D.S., and Suh-Kim H. (2000) Expression of neuroD/BETA2 in mitotic and postmitotic neuronal cells during the development of nervous system. Dev. Dyn. 217, 361–367.PubMedCrossRefGoogle Scholar
  36. 36.
    Itoh F., Nakane T., and Chiba S. (1997) Gene expression of MASH-1, MATH-1, neuroD and NSCL-2, basic helix-loop-helix proteins, during neural differentiation in P19 embryonal carcinoma cells. Tohoku J. Exp. Med. 182, 327–336.PubMedCrossRefGoogle Scholar
  37. 37.
    Farah M.H., Olson J.M., Sucic H.B., Hume R.I., Tapscott S.J., and Turner D.L. (2000) Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127, 693–702.PubMedGoogle Scholar
  38. 38.
    Platika D., Boulos M.H., Baizer L., and Fishman M.C. (1985) Neuronal traits of clonal cell lines derived by fusion of dorsal root ganglia neurons with neuroblastoma cells. Proc. Natl. Acad. Sci. USA 82, 3499–3503.PubMedCrossRefGoogle Scholar
  39. 39.
    Cho J.H., Kwon I.S., Kim S., Ghil S.H., Tsai M.J., Kim Y.S., et al. (2001) Overexpression of BETA2/NeuroD induces neurite outgrowth in F11 neuroblastoma cells. J. Neurochem. 77, 103–109.PubMedCrossRefGoogle Scholar
  40. 40.
    Huang H.P., Chu K., Nemoz-Gaillard E., Elberg D., and Tsai M.J. (2002) Neogenesis of beta-cells in adult BETA2/NeuroD-deficient mice. Mol. Endocrinol. 16, 541–551.PubMedCrossRefGoogle Scholar
  41. 41.
    Anderson D.J., Groves A., Lo L., Ma Q., Rao M., Shah N.M., et al. (1997) Cell lineage determination and the control of neuronal identity in the neural crest. Cold Spring Harb. Symp. Quant. Biol. 62, 493–504.PubMedGoogle Scholar
  42. 42.
    Katayama M., Mizuta I., Sakoyama Y., Kohyama-Koganeya A., Akagawa K., Uyemura K., et al. (1997) Differential expression of neuroD in primary cultures of cerebral cortical neurons. Exp. Cell. Res. 236, 412–417.PubMedCrossRefGoogle Scholar
  43. 43.
    Kanekar S., Perron M., Dorsky R., Harris W.A., Jan L.Y., Jan Y.N., et al. (1997) Xath5 participates in a network of bHLH genes in the developing Xenopus retina. Neuron 19, 981–994.PubMedCrossRefGoogle Scholar
  44. 44.
    Brown N.L., Kanekar S., Vetter M.L., Tucker P.K., Gemza D.L., and Glaser T. (1998) Math5 encodes a murine basic helix-loo-helix transcription factor expressed during early stages of retinal neurogenesis. Development 125, 4821–4833.PubMedGoogle Scholar
  45. 45.
    Morrow E.M., Furukawa T., Lee J.E., and Cepko C.L. (1999) NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126, 23–36.PubMedGoogle Scholar
  46. 46.
    Cai L., Morrow E.M., and Cepko C.L. (2000) Misexpression of basic helix-loop-helix genes in the murine cerebral cortex affects cell fate choices and neuronal survival. Development 127, 3021–3030.PubMedGoogle Scholar
  47. 47.
    Pleasure S.J., Collins A.E., and Lowenstein D.H. (2000) Unique expression patterns of cell fate molecules delineate sequential stages of dentate gyrus development. J. Neurosci. 20, 6095–6105.PubMedGoogle Scholar
  48. 48.
    Uittenbogaard M. and Chiaramello A. (2000) Differential expression patterns of the basic helix-loop-helix transcription factors during aging of the murine brain. Neurosci. Lett. 280, 95–98.PubMedCrossRefGoogle Scholar
  49. 49.
    Bayer S.A. (1980) Quantitative 3H-thymidine radiographic analyses of neurogenesis in the rat amygdala. J. Comp. Neurol. 194, 845–875.PubMedCrossRefGoogle Scholar
  50. 50.
    Rickmann M., Amaral D.G., and Cowan W.M. (1987) Organization of radial glial cells during the development of the rat dentate gyrus. J. Comp. Neurol. 264, 449–479.PubMedCrossRefGoogle Scholar
  51. 51.
    Schwab M.H., Bartholomae A., Heimrich B., Feldmeyer D., Druffel-Augustin S., Goebbels S., et al. (2000) Neuronal basic helix-loop-helix proteins (NEX and BETA2/NeuroD) regulate terminal granule cell differentiation in the hipocampus. J. Neurosci. 20, 3714–3724.PubMedGoogle Scholar
  52. 52.
    Schwab M.H., Druffel-Augustin S., Gass P. Jung M., Klugmann M., Bartholomae A., et al. (1998) Neuronal basic helix-loop-helix proteins (NEX, neuroD, NDRF): spatiotemporal expression and targeted disruption of the NEX gene in transgenic mice. J. Neurosci. 18, 1408–1418.PubMedGoogle Scholar
  53. 53.
    Goldowitz D. and Hamre K. (1998) The cells and molecules that make a cerebellum. Trends Neurosci. 21, 375–382.PubMedCrossRefGoogle Scholar
  54. 54.
    Dahmane N. and Ruiz-i-Altaba A. (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126, 308.Google Scholar
  55. 55.
    Li C.M., Yan R.T., and Wang S.Z. (1999) Misexpression of cNSCL1 disrupts retinal development. Mol. Cell. Neurosci. 14, 17–27.PubMedCrossRefGoogle Scholar
  56. 56.
    Ahmad I., Acharya H.R., Rogers J.A., Shibata A., Smithgall T.E., and Dooley C.M. (1998) The role of NeuroD as a differentiation factor in the mammalian retina. J. Mol. Neurosci. 11, 165–178.PubMedCrossRefGoogle Scholar
  57. 57.
    Inoue T., Hojo M., Bessho Y., Tano Y., Lee J.E., and Kageyama R. (2002) Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development 129, 831–842.PubMedGoogle Scholar
  58. 58.
    Gibson F., Walsh J., Mburu P., Varela A., Brown K.A., Antonio M., et al. (1995) A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374, 62–64.PubMedCrossRefGoogle Scholar
  59. 59.
    Nibu K., Kondo K., Ohta Y., Ishibashi T., Rothstein J.L., and Kaga K. (2001) Expression of NeuroD and TrkB in developing and aged mouse olfactory epithelium. Neuroreport 12, 1615–1619.PubMedCrossRefGoogle Scholar
  60. 60.
    Cau E., Casarosa S., and Guillemot F. (2002) Mash1 and Ngn1 control distinct steps of determination and differentiation in the olfactory sensory neuron lineage. Development 129, 1871–1880.PubMedGoogle Scholar
  61. 61.
    Cau E., Gradwohl G., Fode C., and Guillemot F. (1997) Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 124, 1611–1621.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiologyBaylor College of MedicineHouston
  2. 2.Department of Program of DevelopmentBaylor College of MedicineHouston

Personalised recommendations