Molecular Neurobiology

, Volume 29, Issue 3, pp 289–301

Neurotrophins as mediators of drug effects on mood, addiction, and neuroprotection

Article

Abstract

The induction of synthesis or release of endogenous neurotrophic factors in the brain by low-molecular-weight drugs could be a feasible alternative for the direct administration of neurotrophic factors for the treatment of central nervous system disorders. Recent data suggest that several drugs already in clinical use increase the synthesis, release, or signaling of neurotrophins. Antidepressant drugs increase the synthesis and signaling of brain-derived neurotrophic factor (BDNF), and BDNF signaling appears to be both sufficient and necessary for the antidepressant-induced behavioral effects. Furthermore, neurotrophins and other neurotrophic factors play a role in the acute and chronic responses produced by addictive drugs. Moreover, several neuroprotective drugs influence neurotrophin synthesis or signaling, although the significance of these effects is still unclear. These findings reveal a wider role for neurotrophic factors in drug action than has previously been expected, and they suggest that neurotrophin-induced trophic responses in neuronal connectivity and plasticity may be involved in the mechanism of action of several classes of CNS drugs. Improved assay systems are needed for the systematic screening of the effects of putative neuroprotective drugs on the synthesis, release, and signaling of neurotrophic factors, and for the evaluation of the functional role of these factors in the action of novel drug candidates.

Index Entries

BDNF NGF antidepressants morphine neurodegeneration plasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hefti F. (1997) Pharmacology of neurotrophic factors. Annu. Rev. Pharmacol. Toxicol. 37, 239–267.PubMedCrossRefGoogle Scholar
  2. 2.
    Huang E.J. and Reichardt L.F. (2001) Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736.PubMedCrossRefGoogle Scholar
  3. 3.
    Sofroniew M., Howe C., and Mobley W. (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu. Rev. Neurosci. 24, 1217–1281.PubMedCrossRefGoogle Scholar
  4. 4.
    Thoenen H. and Sendtner M. (2002) Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat. Neurosci. 5 Suppl, 1046–1050.PubMedCrossRefGoogle Scholar
  5. 5.
    Chao M. (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat. Rev. Neurosci. 4, 299–309.PubMedCrossRefGoogle Scholar
  6. 6.
    McAllister A.K., Katz L.C., and Lo D.C. (1999) Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22, 295–318.PubMedCrossRefGoogle Scholar
  7. 7.
    Poo M.M. (2001) Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 24–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Knusel B., Beck K.D., Winslow J.W., Rosenthal A., Burton L.E., Widmer H.R., Nikolics K., and Hefti F. (1992) Brain-derived neurotrophic factor administration protects basal forebrain cholinergic but not nigral dopaminergic neurons from degenerative changes after axotomy in the adult rat brain. J. Neurosci. 12, 4391–4402.PubMedGoogle Scholar
  9. 9.
    Morse J.K., Wiegand S.J., Anderson K., You Y., Cai N., Carnahan J., et al. (1993) Brain-derived neurotrophic factor (BDNF) prevents the degeneration of medial septal cholinergic neurons following fimbria transection. J. Neurosci. 13, 4146–4156.PubMedGoogle Scholar
  10. 10.
    Mamounas L.A., Blue M.E., Siuciak J.A., and Altar C.A. (1995) Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain. J. Neurosci. 15, 7929–7939.PubMedGoogle Scholar
  11. 11.
    Egan M.F., Kojima M., Callicott J.H., Goldberg T.E., Kolachana B.S., Bertolino A., et al. (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269.PubMedCrossRefGoogle Scholar
  12. 12.
    Kunugi H., Ueki A., Otsuka M., Isse K., Hirasawa H., Kato N., et al. (2001) A novel polymorphism of the brain-derived neurotrophic factor (BDNF) gene associated with late-onset Alzheimer’s disease. Mol. Psychiatry 6, 83–86.PubMedCrossRefGoogle Scholar
  13. 13.
    Riemenschneider M., Schwarz S., Wagenpfeil S., Diehl J., Muller U., Forstl H., et al. (2002) A polymorphism of the brain-derived neurotrophic factor (BDNF) is associated with Alzheimer’s disease in patients lacking the apolipoprotein E epsilon4 allele. Mol. Psychiatry 7, 782–785.PubMedCrossRefGoogle Scholar
  14. 14.
    Ventriglia M., Bocchio Chiavetto L., Benussi L., Binetti G., Zanetti O., Riva M.A., et al. (2002) Association between the BDNF 196 A/G polymorphism and sporadic Alzheimer’s disease. Mol. Psychiatry 7, 136–137.PubMedCrossRefGoogle Scholar
  15. 15.
    Neves-Pereira M., Mundo E., Muglia P., King N., Macciardi F., and Kennedy J.L. (2002) The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am. J. Hum. Genet. 71, 651–655.PubMedCrossRefGoogle Scholar
  16. 16.
    Sklar P., Gabriel S.B., McInnis M.G., Bennett P., Lim Y.M., Tsan G., et al. (2002) Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Mol. Psychiatry 7, 579–593.PubMedCrossRefGoogle Scholar
  17. 17.
    Poduslo J.F. and Curran G.L. (1996) Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res. Mol. Brain Res. 36, 280–286.PubMedCrossRefGoogle Scholar
  18. 18.
    Saragovi H.U. and Gehring K. (2000) Development of pharmacological agents for targeting neurotrophins and their receptors. Trends Pharmacol. Sci. 21, 93–98.PubMedCrossRefGoogle Scholar
  19. 19.
    Granholm A., Albeck D., Backman C., Curtis M., Ebendal T., Friden P., et al. (1998) A noninvasive system for delivering neural growth factors across the blood-brain barrier: a review. Rev. Neurosci. 9, 31–55.PubMedGoogle Scholar
  20. 20.
    Wu D. and Pardridge W.M. (1999) Neuroprotection with noninvasive neurotrophin delivery to the brain. Proc. Natl. Acad. Sci. USA 96, 254–259.PubMedCrossRefGoogle Scholar
  21. 21.
    Kramer R., Zhang Y., Gehrmann J., Gold R., Thoenen H., and Wekerle H. (1995) Gene transfer through the blood-nerve barrier: NGF-engineered neuritogenic T lymphocytes attenuate experimental autoimmune neuritis. Nat. Med. 1, 1162–1166.PubMedCrossRefGoogle Scholar
  22. 22.
    Backman C., Rose G., Hoffer B., Henry M., Bartus R., Friden P., et al. (1996) Systemic administration of a nerve growth factor conjugate reverses age-related cognitive dysfunction and prevents cholinergic neuron atrophy. J. Neurosci. 16, 5437–5442.PubMedGoogle Scholar
  23. 23.
    Thoenen H., Castrén E., Berzaghi M., Blöchl A., and Lindholm D. (1994) Neurotrophic factors: possibilities and limitations in the treatment of neurodegenerative disorders. In: Recent advances in the treatment of neurodegenerative disorders and cognitive dysfunctions (Racagai, G., Brunello, N., Langer, S.Z., eds.) Int. Acad. Biochem. Drug Res. vol. 7, Krager, Basel, Switzerland, pp. 197–203.Google Scholar
  24. 24.
    Zafra F., Hengerer B., Leibrock J., Thoenen H., and Lindholm D. (1990) Activity-dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J. 9, 3545–3550.PubMedGoogle Scholar
  25. 25.
    Ballarín M., Ernfors P., Lindefors N., and Persson H. (1991) Hippocampal damage and kainic acid injection induce a rapid increase in mRNA for BDNF and NGF in rat brain. Exp. Neurol. 114, 35–43.PubMedCrossRefGoogle Scholar
  26. 26.
    Dugich-Djordjevic M.M., Tocco G., Willoughby D.A., Najm I., Pasinetti G.M., Thompson R.F., et al. (1992) BDNF mRNA expression in the developing rat brain following kainic acid induced seizure activity. Neuron 8, 1127–1138.PubMedCrossRefGoogle Scholar
  27. 27.
    Berzaghi M.P., Cooper J.D., Castrén E., Zafra F., Sofroniew M.V., Thoenen H., et al. (1993) Cholinergic regulation of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) but not neurotrophin-3 (NT-3) mRNA levels in the developing rat hippocampus. J. Neurosci. 13, 3818–3826.Google Scholar
  28. 28.
    Duman R.S., Heninger G.R., and Nestler E.J. (1997) A molecular and cellular theory of depression. Arch. Gen. Psychiatry 54, 597–606.PubMedGoogle Scholar
  29. 29.
    Altar C.A. (1999) Neurotrophins and depression. Trends Pharmacol. Sci. 20, 59–61.PubMedCrossRefGoogle Scholar
  30. 30.
    Skolnick P. (1999) Antidepressants for the new millennium. Eur. J. Pharmacol. 375, 31–40.PubMedCrossRefGoogle Scholar
  31. 31.
    Manji H.K., Drevets W.C., and Charney D.S. (2001) The cellular neurobiology of depression. Nat. Med. 7, 541–547.PubMedCrossRefGoogle Scholar
  32. 32.
    Reid I.C. and Stewart C.A. (2001) How antidepressants work: New perspectives on the pathophysiology of depressive disorder. Br. J. Psychiatry 178, 299–303.PubMedCrossRefGoogle Scholar
  33. 33.
    Nestler E.J., Barrot M., DiLeone R.J., Eisch A.J., Gold S.J., and Monteggia L.M. (2002) Neurobiology of depression. Neuron 34, 13–25.PubMedCrossRefGoogle Scholar
  34. 34.
    Nobler M.S., Sackeim H.A., Prohovnik I., Moeller J.R., Mukherjee S., Schnur D.B., et al. (1994) Regional cerebral blood flow in mood disorders, III. Treatment and clinical response. Arch. Gen. Psychiatry 51, 884–897.PubMedGoogle Scholar
  35. 35.
    Duman R.S. and Charney D.S. (1999) Cell atrophy and loss in major depression. Biol. Psychiatry 45, 1083–1084.PubMedCrossRefGoogle Scholar
  36. 36.
    Rajkowska G., Miguel-Hidalgo J.J., Wei J., Dilley G., Pittman S.D., Meltzer H.Y., et al. (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol. Psychiatry 45, 1085–1098.PubMedCrossRefGoogle Scholar
  37. 37.
    Castrén E. (2004) Neurotrophic effects of antidepressant drugs. Curr. Opin. Pharmacol., 4, 58–64.PubMedCrossRefGoogle Scholar
  38. 38.
    Isackson P.J., Huntsman M.M., Murray K.D., and Gall C.M. (1991) BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal pattern of induction distinct from NGF. Neuron 6, 937–948.PubMedCrossRefGoogle Scholar
  39. 39.
    Rocamora N., Palacios J.M., and Mengod G. (1992) Limbic seizures induce a differential regulation of the expression of nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3, in the rat hippocampus. Brain Res. Mol. Brain Res. 13, 27–33.PubMedCrossRefGoogle Scholar
  40. 40.
    Nibuya M., Morinobu S., and Duman R.S. (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. 15, 7539–7547.PubMedGoogle Scholar
  41. 41.
    Zetterström T.S., Pei Q., and Grahame-Smith D.G. (1998) Repeated electroconvulsive shock extends the duration of enhanced gene expression for BDNF in rat brain compared with a single administration. Brain Res. Mol. Brain Res. 57, 106–110.PubMedCrossRefGoogle Scholar
  42. 42.
    Aloyz R., Fawcett J.P., Kaplan D.R., Murphy R.A., and Miller F.D. (1999) Activity-dependent activation of TrkB neurotrophin receptors in the adult CNS. Learn. Mem. 6, 216–231.PubMedGoogle Scholar
  43. 43.
    Binder D.K., Routbort M.J., and McNamara J.O. (1999) Immunohistochemical evidence of seizure-induced activation of trk receptors in the mossy fiber pathway of adult rat hippocampus. J. Neurosci. 19, 4616–4626.PubMedGoogle Scholar
  44. 44.
    Russo-Neustadt A., Beard R.C., and Cotman C.W. (1999) Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21, 679–682.PubMedCrossRefGoogle Scholar
  45. 45.
    Coppell A.L., Pei Q., and Zetterstrom T.S.C. (2003) Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology 44, 903–910.PubMedCrossRefGoogle Scholar
  46. 46.
    Chen B., Dowlatshahi D., MacQueen G.M., Wang J.F., and Young L.T. (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol. Psychiatry 50, 260–265.PubMedCrossRefGoogle Scholar
  47. 47.
    Saarelainen T., Hendolin P., Lucas G., Koponen E., Sairanen M., MacDonald E., et al. (2003) Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J. Neurosci. 23, 349–357.PubMedGoogle Scholar
  48. 48.
    Hashimoto R., Takei N., Shimazu K., Christ L., Lu B., and Chuang de M. (2002) Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: An essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology 43, 1173–1179.PubMedCrossRefGoogle Scholar
  49. 49.
    Siuciak J.A., Lewis D.R., Wiegand S.J., and Lindsay R.M. (1997) Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol. Biochem. Behav. 56, 131–137.PubMedCrossRefGoogle Scholar
  50. 50.
    Shirayama Y., Chen A.C., Nakagawa S., Russell D.S., and Duman R.S. (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 22, 3251–3261.PubMedGoogle Scholar
  51. 51.
    Eisch A.J., Bolaños C.A., de Wit J., Simonak R.D., Pudiak C.M., Barrot M., et al. (2003) Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol. Psychiatry 54, 994–1005.PubMedCrossRefGoogle Scholar
  52. 52.
    Thompson S.W., Bennett D.L., Kerr B.J., Bradbury E.J., and McMahon S.B. (1999) Brainderived neurotrophic factor is an endogenous modulator of nociceptive responses in the spinal cord. Proc. Natl. Acad. Sci. USA 96, 7714–7718.PubMedCrossRefGoogle Scholar
  53. 53.
    Smith M.A., Makino S., Kvetnansky R., and Post R.M. (1995) Effects of stress on neurotrophic factor expression in the rat brain. Ann. NY Acad. Sci. 771, 234–239.PubMedCrossRefGoogle Scholar
  54. 54.
    Rios M., Fan G., Fekete C., Kelly J., Bates B., Kuehn R., et al. (2001) Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol. Endocrinol. 15, 1748–1757.PubMedCrossRefGoogle Scholar
  55. 55.
    Lyons W.E., Mamounas L.A., Ricaurte G.A., Coppola V., Reid, S.W., Bora S.H., et al. (1999) Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc. Natl. Acad. Sci. USA 96, 15,239–15,244.CrossRefGoogle Scholar
  56. 56.
    Koponen E., Voikar V., Riekki R., Saarelainen T., Rauvala H., Taira T., et al. (2003) Improved memory and increased trkB and PLC-gamma phosphorylation, but reduced LTP in transgenic mice overexpressing trkB receptor in neurons. Soc. Neurosci. Abstr. 145.4Google Scholar
  57. 57.
    Sen S., Nesse R.M., Stoltenberg S.F., Li S., Gleiberman L., Chakravarti A., et al. (2003) A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology 28, 397–401.PubMedCrossRefGoogle Scholar
  58. 58.
    Nestler E.J., Alreja M., and Aghajanian G.K. (1999) Molecular control of locus coeruleus neurotransmission. Biol. Psychiatry 46, 1131–1139.PubMedCrossRefGoogle Scholar
  59. 59.
    Williams J.T., Christie M.J., and Manzoni O. (2001) Cellular and synaptic adaptations mediating opioid dependence. Physiol. Rev. 81, 299–343.PubMedGoogle Scholar
  60. 60.
    Nestler E.J. (2002) Common molecular and cellular substrates of addiction and memory. Neurobiol. Learn. Mem. 78, 637–647.PubMedCrossRefGoogle Scholar
  61. 61.
    Ungless M.A., Whistler J.L., Malenka R.C., and Bonci A. (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583–587.PubMedCrossRefGoogle Scholar
  62. 62.
    Saal D., Dong Y., Bonci A., and Malenka R.C. (2003) Drugs of abuse and stress trigger a common synptic adaptation in dopamine neurons. Neuron 37, 577–582.PubMedCrossRefGoogle Scholar
  63. 63.
    Sklair-Tavron L., Shi W.X., Lane S.B., Harris H.W., Bunney B.S., and Nestler E.J. (1996) Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons. Proc. Natl. Acad. Sci. USA 93, 11,202–11,207.CrossRefGoogle Scholar
  64. 64.
    Nestler E.J. and Aghajanian G.K. (1997) Molecular and cellular basis of addiction. Science 278, 58–63.PubMedCrossRefGoogle Scholar
  65. 65.
    Nestler E.J. (2001) Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2, 119–128.PubMedCrossRefGoogle Scholar
  66. 66.
    Nestler E.J. (2002) From neurobiology to treatment: progress against addiction. Nat. Neurosci. 5 Suppl, 1076–1079.PubMedCrossRefGoogle Scholar
  67. 67.
    Hyman C., Hofer M., Barde Y.A., Juhasz M., Yancopoulos G.D., Squinto S.P., et al. (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350, 230–232.PubMedCrossRefGoogle Scholar
  68. 68.
    Altar C.A., Boylan C.B., Fritsche M., Jones B.E., Jackson C., Wiegand S.J., et al. (1994) Efficacy of brain-derived neurotrophic factor and neurotrophin-3 on neurochemical and behavioral deficits associated with partial nigrostriatal dopamine lesions. J. Neurochem. 63, 1021–1032.PubMedCrossRefGoogle Scholar
  69. 69.
    Hyman C., Juhasz M., Jackson C., Wright P., Ip N.Y., and Lindsay R.M. (1994) Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J. Neurosci. 14, 335–347.PubMedGoogle Scholar
  70. 70.
    Martin-Iverson M.T., Todd K.G., and Altar C.A. (1994) Brain-derived neurotrophic factor and neurotrophin-3 activate striatal dopamine and serotonin metabolism and related behaviors: interactions with amphetamine. J. Neurosci. 14, 1262–1270.PubMedGoogle Scholar
  71. 71.
    Kontkanen O. and Castrén E. (1999) Trophic effects of selegiline on cultured dopaminergic neurons. Brain Res. 829, 190–192.PubMedCrossRefGoogle Scholar
  72. 72.
    Numan S., Lane-Ladd S.B., Zhang L., Lundgren K.H., Russell D.S., Seroogy K.B., et al. (1998) Differential regulation of neurotrophin and trk receptor mRNAs in catecholaminergic nuclei during chronic opiate treatment and withdrawal. J. Neurosci. 18, 10,700–10,708.Google Scholar
  73. 73.
    Berhow M.T., Russell D.S., Terwilliger R.Z., Beitner-Johnson D., Self D.W., Lindsay R.M., et al. (1995) Influence of neurotrophic factors on morphine- and cocaine-induced biochemical changes in the mesolimbic dopamine system. Neuroscience 68, 969–979.PubMedCrossRefGoogle Scholar
  74. 74.
    Horger B.A., Iyasere C.A., Berhow M.T., Messer C.J., Nestler E.J., and Taylor J.R. (1999) Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. J. Neurosci. 19, 4110–4122.PubMedGoogle Scholar
  75. 75.
    Akbarian S., Rios M., Liu R.J., Gold S.J., Fong H.F., Zeiler S., et al. (2002) Brain-derived neurotrophic factor is essential for opiate-induced plasticity of noradrenergic neurons. J. Neurosci. 22, 4153–4162.PubMedGoogle Scholar
  76. 76.
    Messer C.J., Eisch A.J., Carlezon W.A., Jr., Whisler K., Shen L., Wolf D.H., et al. (2000) Role for GDNF in biochemical and behavioral adaptations to drugs of abuse. Neuron 26, 247–257.PubMedCrossRefGoogle Scholar
  77. 77.
    Lucas G., Hendolin P., Harkany T., Agerman K., Paratcha G., Holmgren C., et al. (2003) Neurotrophin-4 mediated TrkB activation reinforces morphine-induced analgesia. Nat. Neurosci. 6, 221–222.PubMedCrossRefGoogle Scholar
  78. 78.
    Smith D.J., Leil T.A., and Liu X. (2003) Neurotrophin-4 is required for tolerance to morphine in the mouse. Neurosci. Lett. 340, 103–106.PubMedCrossRefGoogle Scholar
  79. 79.
    Doble A. (1996) The pharmacology and mechanism of action of riluzole. Neurology 47, S233–241.PubMedGoogle Scholar
  80. 80.
    Mizuta I., Ohta M., Ohta K., Nishimura M., Mizuta E., and Kuno S. (2001) Riluzole stimulates nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor synthesis in cultured mouse astrocytes. Neurosci. Lett. 310, 117–120.PubMedCrossRefGoogle Scholar
  81. 81.
    Katoh-Semba R., Asano T., Ueda H., Morishita R., Takeuchi I., Inaguma Y., et al. (2002) Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus. FASEB J. 16, 1328–1330.PubMedGoogle Scholar
  82. 82.
    Parsons C.G., Danysz W., and Quack G. (1999) Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharmacology 38, 735–767.PubMedCrossRefGoogle Scholar
  83. 83.
    Marvanova M., Lakso M., Pirhonen J., Nawa H., Wong G., and Castrén E. (2001) The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol. Cell Neurosci. 18, 247–258.PubMedCrossRefGoogle Scholar
  84. 84.
    Lauterborn J.C., Lynch G., Vanderklish P., Arai A., and Gall C.M. (2000) Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J. Neurosci. 20, 8–21.PubMedGoogle Scholar
  85. 85.
    Legutko B., Li X., and Skolnick P. (2001) Regulation of BDNF expression in primary neuron culture by LY392098, a novel AMPA receptor potentiator. Neuropharmacology 40, 1019–1027.PubMedCrossRefGoogle Scholar
  86. 86.
    Mackowiak M., O’Neill M.J., Hicks C.A., Bleakman D., and Skolnick P. (2002) An AMPA receptor potentiator modulates hippocampal expression of BDNF: an in vivo study. Neuropharmacology 43, 1–10.PubMedCrossRefGoogle Scholar
  87. 87.
    Murray T.K., Whalley K., Robinson C.S., Ward M.A., Hicks C.A., Lodge D., et al. (2003) LY503430, a novel AMPA receptor potentiator with functional, neuroprotective and neurotrophic effects in rodent models of Parkinson’s disease. J. Pharmacol. Exp. Ther. 2, 2.Google Scholar
  88. 88.
    Guillin O., Diaz J., Carroll P., Griffon N., Schwartz J.C., and Sokoloff P. (2001) BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 411, 86–89.PubMedCrossRefGoogle Scholar
  89. 89.
    Inoue S., Susukida M., Ikeda K., Murase K., and Hayashi K. (1997) Dopaminergic transmitter up-regulation of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) synthesis in mouse astrocytes in culture. Biochem. Biophys. Res. Comm. 238, 468–472.PubMedCrossRefGoogle Scholar
  90. 90.
    Ohta M., Mizuta I., Ohta K., Nishimura M., Mizuta E., Hayashi K., et al. (2000) Apomorphine up-regulates NGF and GDNF synthesis in cultured mouse astrocytes. Biochem. Biophys. Res. Comm. 272, 18–22.PubMedCrossRefGoogle Scholar
  91. 91.
    Heinonen E.H. and Lammintausta R. (1991) A review of the pharmacology of selegiline. Acta Neurol. Scand. Suppl. 136, 44–59.PubMedCrossRefGoogle Scholar
  92. 92.
    Tatton W.G., Ansari K., Ju W., Salo P.T., and Yu P.H. (1995) Selegiline induces “trophic-like” rescue of dying neurons without MAO inhibition. Adv. Exp. Med. Biol. 363, 15–16.PubMedGoogle Scholar
  93. 93.
    Mizuta I., Ohta M., Ohta K., Nishimura M., Mizuta E., Hayashi K., et al. (2000) Selegiline and desmethylselegiline stimulate NGF, BDNF, and GDNF synthesis in cultured mouse astrocytes. Biochem. Biophys. Res. Comm. 279, 751–755.PubMedCrossRefGoogle Scholar
  94. 94.
    Castrén E., Thoenen H., and Lindholm D. (1995) Brain-derived neurotrophic factor messenger RNA is expressed in the septum, hypothalamus and in adrenergic brain stem nuclei of adult rat brain and is increased by osmotic stimulation in the paraventricular nucleus. Neuroscience 64, 71–80.PubMedCrossRefGoogle Scholar
  95. 95.
    Altar C.A., Cai N., Bliven T., Juhasz M., Conner J.M., Acheson A.L., et al. (1997) Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389, 856–860.PubMedCrossRefGoogle Scholar
  96. 96.
    Nitta A., Ito M., Fukumitsu H., Ohmiya M., Ito H., Sometani A., et al. (1999) 4-Methylcatechol increases brain-derived neurotrophic factor content and mRNA expression in cultured brain cells and in rat brain in vivo. J. Pharmacol. Exp. Ther. 291, 1276–1283.PubMedGoogle Scholar
  97. 97.
    Lee S.J. and McEwen B.S. (2001) Neurotrophic and neuroprotective actions of estrogens and their therapeutic implications. Ann. Rev. Pharmacol. Toxicol. 41, 569–591.CrossRefGoogle Scholar
  98. 98.
    Behl C. (2002) Oestrogen as a neuroprotective hormone. Nat. Rev. Neurosci. 3, 433–442.PubMedGoogle Scholar
  99. 99.
    Solum D.T. and Handa R.J. (2002) Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus. J. Neurosci. 22, 2650–2659.PubMedGoogle Scholar
  100. 100.
    Sohrabji F., Miranda R.C., and Toran-Allerand C.D. (1995) Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. USA 92, 11,110–11,114.CrossRefGoogle Scholar
  101. 101.
    Miranda R.C., Sohrabji F., and Toran-Allerand D. (1994) Interactions of estrogen with the neurotrophins and their receptors during neural development. Horm. Behav. 28, 367–375.PubMedCrossRefGoogle Scholar
  102. 102.
    Toran-Allerand C.D. (1996) Mechanisms of estrogen action during neural development: mediation by interactions with the neurotrophins and their receptors? J. Steroid Biochem. Mol. Biol. 56, 169–178.PubMedCrossRefGoogle Scholar
  103. 103.
    Steiner J.P., Connolly M.A., Valentine H.L., Hamilton G.S., Dawson T.M., Hester L., et al. (1997) Neurotrophic actions of nonimmunosuppressive analogues of immunosuppressive drugs FK506, rapamycin and cyclosporin A. Nat. Med. 3, 421–428.PubMedCrossRefGoogle Scholar
  104. 104.
    Klettner A. and Herdegen T. (2003) FK506 and its analogs—therapeutic potential for neurological disorders. Curr. Drug Target CNS Neurol. Disord. 2, 153–162.CrossRefGoogle Scholar
  105. 105.
    Tanaka K., Fujita N., and Ogawa N. (2003) Immunosuppressive (FK506) and nonimmunosuppressive (GPI1046) immunophilin ligands activate neurotrophic factors in the mouse brain. Brain Res. 970, 250–253.PubMedCrossRefGoogle Scholar
  106. 106.
    Russo-Neustadt A., Ha T., Ramirez R., and Kesslak J.P. (2001) Physical activity-antidepressant treatment combination: impact on brain- derived neurotrophic factor and behavior in an animal model. Behav. Brain Res. 120, 87–95.PubMedCrossRefGoogle Scholar
  107. 107.
    Conti A.C., Cryan J.F., Dalvi A., Lucki I., and Blendy J.A. (2002) cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. J. Neurosci. 22, 3262–3268.PubMedGoogle Scholar
  108. 108.
    Van Hoomissen J.D., Chambliss H.O., Holmes P.V., and Dishman R.K. (2003) Effects of chronic exercise and imipramine on mRNA for BDNF after olfactory bulbectomy in rat. Brain Res. 974, 228–235.PubMedCrossRefGoogle Scholar
  109. 109.
    Chen A.C., Shin K.H., Duman R.S., and Sanacora G. (2001) ECS-Induced mossy fiber sprouting and BDNF expression are attenuated by ketamine pretreatment. J. Ect. 17, 27–32.PubMedCrossRefGoogle Scholar
  110. 110.
    Smith M.A., Makino S., Kvetnansky R., and Post R.M. (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J. Neurosci. 15, 1768–1777.PubMedGoogle Scholar
  111. 111.
    Vaidya V.A., Terwilliger R.M., and Duman R.S. (1999) Role of 5-HT2A receptors in the stress-induced down-regulation of brain- derived neurotrophic factor expression in rat hippocampus. Neurosci. Lett. 262, 1–4.PubMedCrossRefGoogle Scholar
  112. 112.
    Nibuya M., Takahashi M., Russell D.S., and Duman R.S. (1999) Repeated stress increases catalytic TrkB mRNA in rat hippocampus. Neurosci. Lett. 267, 81–84.PubMedCrossRefGoogle Scholar
  113. 113.
    Nibuya M., Nestler E.J., and Duman R.S. (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J. Neurosci. 16, 2365–2372.PubMedGoogle Scholar
  114. 114.
    Thome J., Sakai N., Shin K., Steffen C., Zhang Y.J., Impey S., et al. (2000) cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J. Neurosci. 20, 4030–4036.PubMedGoogle Scholar
  115. 115.
    Jeon S.H., Seong Y.S., Juhnn Y.S., Kang U.G., Ha K.S., Kim Y.S., et al. (1997) Electroconvulsive shock increases the phosphorylation of cyclic AMP response element binding protein at Ser-133 in rat hippocampus but not in cerebellum. Neuropharmacology 36, 411–414.PubMedCrossRefGoogle Scholar
  116. 116.
    Le Foll B., Frances H., Diaz J., Schwartz J.C., and Sokoloff P. (2002) Role of the dopamine D3 receptor in reactivity to cocaine-associated cues in mice. Eur. J. Neurosci. 15, 2016–2026.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  1. 1.Neuroscience CenterUniversity of HelsinkiHelsinkiFinland

Personalised recommendations