Molecular Neurobiology

, Volume 29, Issue 2, pp 155–165 | Cite as

Myocyte enhancer factor-2 transcription factors in neuronal differentiation and survival



Myocyte enhancer factor-2 (MEF2) transcription factors regulate genes that control critical cellular processes including proliferation, differentiation, and survival. Although MEF2 proteins were first identified as transcription factors that bound A/T rich DNA sequences and controlled muscle-specific genes during myogenic development, it is now apparent that MEF2 transcription factors are also highly expressed in neurons and are critical determinants of neuronal differentiation and fate. Here we focus our discussion on the role of MEF2 proteins in nervous tissue and the regulation of these transcription factors by calcium and phosphorylation signaling pathways.

Index Entries

Neuron apoptosis brain MADS-box protein kinases calcium signaling muscle development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu Y.T., Breitbart R.E., Smoot L.B., Lee Y., Mahdavi V., Nadal-Ginard B. (1992) Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 6, 1783–1798.PubMedCrossRefGoogle Scholar
  2. 2.
    Naya F.S., Olson E. (1999) MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr. Opin. Cell Biol. 11, 683–688.PubMedCrossRefGoogle Scholar
  3. 3.
    Shore P., Sharrocks A.D. (1995) The MADS-box family of transcription factors. Eur. J. Biochem. 229, 1–13.PubMedCrossRefGoogle Scholar
  4. 4.
    Breitbart R.E., Liang C.S., Smoot L.B., Laheru D.A., Mahdavi V., Nadal-Ginard B. (1993) A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage. Development 118, 1095–1106.PubMedGoogle Scholar
  5. 5.
    Leifer D., Krainc D., Yu Y.T., et al. (1993) MEF2C, a MADS/MEF2-family transcription factor expressed in a laminar distribution in cerebral cortex. Proc. Natl. Acad. Sci. USA 90, 1546–1550.PubMedCrossRefGoogle Scholar
  6. 6.
    McDermott J.C., Cardoso M.C., Yu Y.T., et al. (1993) hMEF2C gene encodes skeletal muscle- and brain-specific transcription factors. Mol. Cell. Biol. 13, 2564–2577.PubMedGoogle Scholar
  7. 7.
    Martin J.F., Miano J.M., Hustad C.M., Copeland N.G., Jenkins N.A., Olson E.N. (1994) A Mef2 gene that generates a muscle-specific isoform via alternative mRNA splicing. Mol. Cell. Biol. 14, 1647–1656.PubMedGoogle Scholar
  8. 8.
    Moore S., Vrebalov J., Payton P., Giovannoni J. (2002) Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. J. Exp. Bot. 53, 2023–2030.PubMedCrossRefGoogle Scholar
  9. 9.
    Ng M., Yanofsky M.F. (2001) Function and evolution of the plant MADS-box gene family. Nat. Rev. Genet. 2, 186–195.PubMedCrossRefGoogle Scholar
  10. 10.
    Yun K., Wold B. (1996) Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr. Opin. Cell Biol. 8, 877–889.PubMedCrossRefGoogle Scholar
  11. 11.
    Black B.L., Olson E.N. (1998) Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell. Dev. Biol. 14, 167–196.PubMedCrossRefGoogle Scholar
  12. 12.
    McKinsey T.A., Zhang C.L., Olson E.N. (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem. Sci. 27, 40–47.PubMedCrossRefGoogle Scholar
  13. 13.
    Molkentin J.D., Firulli A.B., Black B.L., et al. (1996) MEF2B is a potent transactivator expressed in early myogenic lineages. Mol. Cell. Biol. 16, 3814–3824.PubMedGoogle Scholar
  14. 14.
    Molkentin J.D., Olson E.N. (1996) Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc. Natl. Acad. Sci. USA 93, 9366–9373.PubMedCrossRefGoogle Scholar
  15. 15.
    Ornatsky O.I., McDermott J.C. (1996) MEF2 protein expression, DNA binding specificity and complex composition, and transcriptional activity in muscle and non-muscle cells. J. Biol. Chem. 271, 24927–24933.PubMedCrossRefGoogle Scholar
  16. 16.
    Puri P.L., Sartorelli V. (2000) Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. J. Cell. Physiol. 185, 155–173.PubMedCrossRefGoogle Scholar
  17. 17.
    Puri P.L., Wu Z., Zhang P., et al. (2000) Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells. Genes Dev. 14, 574–584.PubMedGoogle Scholar
  18. 18.
    Lin Q., Schwarz J., Bucana C., Olson E.N. (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276, 1404–1407.PubMedCrossRefGoogle Scholar
  19. 19.
    Bour B.A., O’Brien M.A., Lockwood W.L., et al. (1995) Drosophila MEF2, a transcription factor that is essential for myogenesis. Genes Dev. 9, 730–741.PubMedCrossRefGoogle Scholar
  20. 20.
    Prokop A., Landgraf M., Rushton E., Broadie K., Bate M. (1996) Presynaptic development at the Drosophila neuromuscular junction: assembly and localization of presynaptic active zones. Neuron 17, 617–626.PubMedCrossRefGoogle Scholar
  21. 21.
    Kolodziejczyk S.M., Wang L., Balazsi K., DeRepentigny Y., Kothary R., Megeney L.A. (1999) MEF2 is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium. Curr. Biol. 9, 1203–1206.PubMedCrossRefGoogle Scholar
  22. 22.
    Passier R., Zeng H., Frey N., et al. (2000) CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J. Clin. Invest. 105, 1395–1406.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang C.L., McKinsey T.A., Chang S., Antos C.L., Hill J.A., Olson E.N. (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488.PubMedCrossRefGoogle Scholar
  24. 24.
    Youn H.D., Sun L., Prywes R., Liu J.O. (1999) Apoptosis of T cells mediated by Ca2+-induced release of the transcription factor MEF2. Science 286, 790–793.PubMedCrossRefGoogle Scholar
  25. 25.
    Youn H.D., Chatila T.A., Liu J.O. (2000) Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. Embo J. 19, 4323–4331.PubMedCrossRefGoogle Scholar
  26. 26.
    Leifer D., Golden J., Kowall N.W. (1994) Myocyte-specific enhancer binding factor 2C expression in human brain development. Neuroscience 63, 1067–1079.PubMedCrossRefGoogle Scholar
  27. 27.
    Lyons G.E., Micales B.K., Schwarz J., Martin J.F., Olson E.N. (1995) Expression of mef2 genes in the mouse central nervous system suggests a role in neuronal maturation. J. Neurosci. 15, 5727–5738.PubMedGoogle Scholar
  28. 28.
    Ikeshima H., Imai S., Shimoda K., Hata J., Takano T. (1995) Expression of a MADS box gene, MEF2D, in neurons of the mouse central nervous system: implication of its binary function in myogenic and neurogenic cell lineages. Neurosci. Lett. 200, 117–120.PubMedCrossRefGoogle Scholar
  29. 29.
    Mao Z., Wiedmann M. (1999) Calcineurin enhances MEF2 DNA binding activity in calcium-dependent survival of cerebellar granule neurons. J. Biol. Chem. 274, 31102–31107.PubMedCrossRefGoogle Scholar
  30. 30.
    Lin X., Shah S., Bulleit R.F. (1996) The expression of MEF2 genes is implicated in CNS neuronal differentiation. Brain Res. Mol. Brain Res. 42, 307–316.PubMedCrossRefGoogle Scholar
  31. 31.
    Mao Z., Bonni A., Xia F., Nadal-Vicens M., Greenberg M.E. (1999) Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, 785–790.PubMedCrossRefGoogle Scholar
  32. 32.
    Li M., Linseman D.A., Allen M.P., et al. (2001) Myocyte enhancer factor 2A and 2D undergo phosphorylation and caspase-mediated degradation during apoptosis of rat cerebellar granule neurons. J. Neurosci. 21, 6544–6552.PubMedGoogle Scholar
  33. 33.
    Gaudilliere B., Shi Y., Bonni A. (2002) RNA interference reveals a requirement for myocyte enhancer factor 2A in activity-dependent neuronal survival. J. Biol. Chem. 277, 46442–46446.PubMedCrossRefGoogle Scholar
  34. 34.
    Okamoto S., Li Z., Ju C., Scholzke M.N., Mathews E., et al. (2002) Dominant-interfering forms of MEF2 generated by caspase cleavage contribute to NMDA-induced neuronal apoptosis. Proc. Natl. Acad. Sci. USA 99, 3974–3979.PubMedCrossRefGoogle Scholar
  35. 35.
    Okamoto S., Krainc D., Sherman K., Lipton S.A. (2000) Antiapoptotic role of the p38 mitogen-activated protein kinase-myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation. Proc. Natl. Acad. Sci. USA 97, 7561–7566.PubMedCrossRefGoogle Scholar
  36. 36.
    Skerjanc I.S., Wilton S. (2000) Myocyte enhancer factor 2C upregulates MASH-1 expression and induces neurogenesis in P19 cells. FEBS Lett. 472, 53–56.PubMedCrossRefGoogle Scholar
  37. 37.
    Krainc D., Bai G., Okamoto S., et al. (1998) Synergistic activation of the N-methyl-D-aspartate receptor subunit 1 promoter by myocyte enhancer factor 2C and Sp1. J. Biol. Chem. 273, 26218–26224.PubMedCrossRefGoogle Scholar
  38. 38.
    Allen M.P., Xu M., Linseman D.A., et al. (2002) Adhesion-related kinase repression of gonadotropin-releasing hormone gene expression requires Rac activation of the extracellular signal-regulated kinase pathway. J. Biol. Chem. 277, 38133–38140.PubMedCrossRefGoogle Scholar
  39. 39.
    Molkentin J.D., Li L., Olson E.N. (1996) Phosphorylation of the MADS-Box transcription factor MEF2C enhances its DNA binding activity. J. Biol. Chem. 271, 17199–17204.PubMedCrossRefGoogle Scholar
  40. 40.
    Yang S.H., Galanis A., Sharrocks A.D. (1999) Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Mol. Cell. Biol. 19, 4028–4038.PubMedGoogle Scholar
  41. 41.
    Zhao M., New L., Kravchenko V.V., et al. (1999) Regulation of the MEF2 family of transcription factors by p38. Mol. Cell. Biol. 19, 21–30.PubMedGoogle Scholar
  42. 42.
    Wu Z., Woodring P.J., Bhakta K.S., et al. (2000) p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Mol. Cell. Biol. 20, 3951–3964.PubMedCrossRefGoogle Scholar
  43. 43.
    Ornatsky O.I., Cox D.M., Tangirala P., et al. (1999) Post-translational control of the MEF2A transcriptional regulatory protein. Nucleic Acids Res. 27, 2646–2654.PubMedCrossRefGoogle Scholar
  44. 44.
    Han J., Jiang Y., Li Z., Kravchenko V.V., Ulevitch R.J. (1997) Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386, 296–299.PubMedCrossRefGoogle Scholar
  45. 45.
    Wu H., Naya F.J., McKinsey T.A., et al. (2000) MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. Embo J. 19, 1963–1973.PubMedCrossRefGoogle Scholar
  46. 46.
    Kato Y., Kravchenko V.V., Tapping R.I., Han J., Ulevitch R.J., Lee J.D. (1997) BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. Embo J. 16, 7054–7066.PubMedCrossRefGoogle Scholar
  47. 47.
    Yang C.C., Ornatsky O.I., McDermott J.C., Cruz T.F., Prody C.A. (1998) Interaction of myocyte enhancer factor 2 (MEF2) with a mitogen-activated protein kinase, ERK5/BMK1. Nucleic Acids Res. 26, 4771–4777.PubMedCrossRefGoogle Scholar
  48. 48.
    Kato Y., Zhao M., Morikawa A., et al. (2000) Big mitogen-activated kinase regulates multiple members of the MEF2 protein family. J. Biol. Chem. 275, 18534–18540.PubMedCrossRefGoogle Scholar
  49. 49.
    Marinissen M.J., Chiariello M., Pallante M., Gutkind J.S. (1999) A network of mitogen-activated protein kinases links G protein-coupled receptors to the c-jun promoter: a role for c-Jun NH2-terminal kinase, p38s, and extracellular signal-regulated kinase 5. Mol. Cell. Biol. 19, 4289–4301.PubMedGoogle Scholar
  50. 50.
    Kasler H.G., Victoria J., Duramad O., Winoto A. (2000) ERK5 is a novel type of mitogen-activated protein kinase containing a transcriptional activation domain. Mol. Cell. Biol. 20, 8382–8389.PubMedCrossRefGoogle Scholar
  51. 51.
    Liu L., Cavanaugh J.E., Wang Y., Sakagami H., Mao Z., Xia Z. (2003) ERK5 activation of MEF2-mediated gene expression plays a critical role in BDNF-promoted survival of developing but not mature cortical neurons. Proc. Natl. Acad. Sci. USA 100, 8532–8537.PubMedCrossRefGoogle Scholar
  52. 52.
    Shalizi A., Lehtinen M., Gaudilliere B., et al. (2003) Characterization of a neurotrophin signaling mechanism that mediates neuron survival in a temporally specific pattern. J. Neurosci. 23, 7326–7336.PubMedGoogle Scholar
  53. 53.
    Linseman D.A., Cornejo B.J., Le S.S., et al. (2003) A myocyte enhancer factor 2D (MEF2D) kinase activated during neuronal apoptosis is a novel target inhibited by lithium. J. Neurochem. 85, 1488–1499.PubMedCrossRefGoogle Scholar
  54. 54.
    Gong X., X. T, Wiedmann M, Wang X, et al. (2003) Cdk-5 mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38, 33–46.PubMedCrossRefGoogle Scholar
  55. 55.
    Grant P., Sharma P., Pant H.C. (2001) Cyclin-dependent protein kinase 5 (Cdk5) and the regulation of neurofilament metabolism. Eur. J. Biochem. 268, 1534–1546.PubMedCrossRefGoogle Scholar
  56. 56.
    Bajaj N.P. (2000) Cyclin-dependent kinase-5 (CDK5) and amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 1, 319–327.PubMedCrossRefGoogle Scholar
  57. 57.
    Maccioni R.B., Otth C., Concha I.I., Munoz J.P. (2001) The protein kinase Cdk5. Structural aspects, roles in neurogenesis and involvement in Alzheimer’s pathology. Eur. J. Biochem. 268, 1518–1527.PubMedCrossRefGoogle Scholar
  58. 58.
    Takahashi M., Iseki E., Kosaka K. (2000) Cyclin-dependent kinase 5 (Cdk5) associated with Lewy bodies in diffuse Lewy body disease. Brain Res. 862, 253–256.PubMedCrossRefGoogle Scholar
  59. 59.
    Lu J., McKinsey T.A., Zhang C.L., Olson E.N. (2000) Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol. Cell 6, 233–244.PubMedCrossRefGoogle Scholar
  60. 60.
    McKinsey T.A., Zhang C.L., Lu J., Olson E.N. (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106–111.PubMedCrossRefGoogle Scholar
  61. 61.
    Kao H.Y., Verdel A., Tsai C.C., Simon C., Juguilon H., Khochbin S. (2001) Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J. Biol. Chem. 276, 47496–47507.PubMedCrossRefGoogle Scholar
  62. 62.
    Zhang C.L., McKinsey T.A., Olson E.N. (2001) The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis. Proc. Natl. Acad. Sci. USA 98, 7354–7359.PubMedCrossRefGoogle Scholar
  63. 63.
    Linseman P.A., Bartley C.M., Le S.S., et al. (2003). Inactivation of the myocyte enhancer factor-2 repressor histone deacetylase-5 by endogenous Ca(2+)/calmodulin-dependent kinase II promotes depolarization-mediated cerebellar granule neuron survival. J. Biol. Chem. 278, 41472–41481.PubMedCrossRefGoogle Scholar
  64. 64.
    Chawla S., Vanhoutte P., Arnold F.J., Huang C.L., Bading H. (2003) Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J. Neurochem. 85, 151–159.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of Colorado Health Sciences Center and the Denver Veterans Affairs Medical CenterDenver

Personalised recommendations