Advertisement

Molecular Neurobiology

, Volume 28, Issue 2, pp 139–147 | Cite as

Retinal remodeling in inherited photoreceptor degenerations

  • Robert E. Marc
  • Bryan W. Jones
Article

Abstract

Photoreceptor degenerations initiated in rods or the retinal pigmented epithelium usually evoke secondary cone death and sensory deafferentation of the surviving neural retina. In the mature central nervous system, deafferentation evokes atrophy and connective re-patterning. It has been assumed that the neural retina does not remodel, and that it is a passive survivor. Screening of advanced stages of human and rodent retinal degenerations with computational molecular phenotyping has exposed a prolonged period of aggressive negative remodeling in which neurons migrate along aberrant glial columns and seals, restructuring the adult neural retina (1). Many neurons die, but survivors rewire the remnant inner plexiform layer (IPL), forming thousands of novel ectopic microneuromas in the remnant inner nuclear layer (INL). Bipolar and amacrine cells engage in new circuits that are most likely corruptive. Remodeling in human and rodent retinas emerges regardless of the molecular defects that initially trigger retinal degenerations. Although remodeling may constrain therapeutic intervals for molecular, cellular, or bionic rescue, the exposure of intrinsic retinal remodeling by the removal of sensory control in retinal degenerations suggests that neuronal organization in the normal retina may be more plastic than previously believed.

Index Entries

Retinitis pigmentosa retinal dystrophies plasticity deafferentiation computational imaging immunocytochemistry amino acids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jones B.W., Watt C.B., Frederick J.M., Baehr W., Chen C.K., Levine E.M., et al. (2003) J. Comp. Neurol. 464, 1–16.PubMedCrossRefGoogle Scholar
  2. 2.
    http://www.sph.uth.tmc.edu/RetNet/Google Scholar
  3. 3.
    Young M.J., Ray J., Whiteley S.J.O., Klassen H., and Gage F.H. (2000) Mol. Cell. Neurosci. 16, 197–205.PubMedCrossRefGoogle Scholar
  4. 4.
    Coffey P.J., Girman S., Wang S.M., Hetherington L., Keegan D.J., Adamson P., et al. (2002) Nature Neuroscience 5, 53–56.PubMedCrossRefGoogle Scholar
  5. 5.
    Humayun M.S., de Juane E.J., Dagnelie G., Greenberg R.J., Propst R.H., and Phillips D.H. (1996) Arch. Ophthalmol. 114, 40–46.PubMedGoogle Scholar
  6. 6.
    Chow A.Y. and Chow V.Y. (1997) Neurosci. Lett. 225, 13–16.PubMedCrossRefGoogle Scholar
  7. 7.
    Zrenner E., Gabel V.P., Haemmerie H., Hoefflinger B., and Shubert M. (1998) Ophthalmic Res. 30, 197–198.CrossRefGoogle Scholar
  8. 8.
    Scarlatis G. (2000) MSJAMA 283, 2297.Google Scholar
  9. 9.
    Zrenner E. (2002) Science 295, 1022–1025.PubMedCrossRefGoogle Scholar
  10. 10.
    Fariss R.N., Li Z.-Y., and Milam A.H. (2000) Am. J. Ophthalmol. 129, 215–223.PubMedCrossRefGoogle Scholar
  11. 11.
    Strettoi E. and Pignatelli V. (2000) Proc. Natl. Acad. Sci. USA 97, 11,020–11,025.CrossRefGoogle Scholar
  12. 12.
    Strettoi E., Porciatti V., Falsini B., Pignatelli V., and Rossi C. (2002) J. Neurosci. 22, 5492–5504.PubMedGoogle Scholar
  13. 13.
    Fei Y. (2002) Mol. Vis. 8, 306–314.PubMedGoogle Scholar
  14. 14.
    Marc R.E., Murry R.F., and Basinger S.F. (1995) J. Neurosci. 15, 5106–5129.PubMedGoogle Scholar
  15. 15.
    Marc R.E. and Jones B.W. (2002) J. Neurosci. 22, 412–427.Google Scholar
  16. 16.
    Marc R.E. and Liu W. (2000) J. Comp. Neurol. 425, 560–582.PubMedCrossRefGoogle Scholar
  17. 17.
    Marc R.E., Jones B.W., Watt C.B., and Strettoi E. (2003) Prog. Ret. Eye Res. 22, 607–655.CrossRefGoogle Scholar
  18. 18.
    Marc R.E. (1999) J. Comp. Neurol. 407, 47–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Naka K. (1977) J. Neurophysiol. 40, 26–43.PubMedCrossRefGoogle Scholar
  20. 20.
    Frederick J.M., Krasnoperova N.V., Hoffmann K., Church-Kopish J., Rüther K., Howes K., Lem J., and Baehr W. (2001) Investig. Ophthalmol. Vis. Sci. 42, 826–833.Google Scholar
  21. 21.
    Mohand-Said S., Deudon-Combe A., Hicks D., Simonutti M., Forster V., Fintz A.-C., et al. (1998) Proc. Natl. Acad. Sci. USA 95, 8357–8362.PubMedCrossRefGoogle Scholar
  22. 22.
    D’Cruz P.M., Yasumura D., Weir J., Matthes M.T., Abderrahim H., LaVail M.M., and Vollrath D. (2000) Hum. Mol. Genet. 9, 645–651.PubMedCrossRefGoogle Scholar
  23. 23.
    Machida S., Kondo M., Jamison J.A., Khan N.W., Kononen L.T., Sugawara T., Bush R.A., and Sieving P.A. (2000) Investig. Ophthalmol. Vis. Sci. 41, 3200–3208.Google Scholar
  24. 24.
    Dowling J.E. (1968) Proc. R. Soc. Lond. Sec. B. Biol. Sci. 158, 232–252.Google Scholar
  25. 25.
    Euler T., Schneider H., and Wässle H. (1996) J. Neurosci. 16, 2934–2944.PubMedGoogle Scholar
  26. 26.
    Lewis G.P., Charteris D.G., Sethi C.S., and Fisher S.K. (2002) Eye 16, 375–387.PubMedCrossRefGoogle Scholar
  27. 27.
    Tasic B., Nabholz C.E., Baldwin K.K., Kim Y., Rueckert E.H., Ribich S.A., et al. (2002) Molecular Cell 10, 21–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Von Noorden G.K. and Crawford M.L.J. (1978) Investig. Ophthalmol. Vis. Sci. 17, 762–768.Google Scholar
  29. 29.
    Buonomano D.V. and Merzenich M.M. (1998) Annu. Rev. Neurosci. 21, 149–186.PubMedCrossRefGoogle Scholar
  30. 30.
    Jones E.G. and Pons T.P. (1998) Science 282, 1121–1125.PubMedCrossRefGoogle Scholar
  31. 31.
    Tian N. and Copenhagen D.R. (2001) Neuron 32, 439–449.PubMedCrossRefGoogle Scholar
  32. 32.
    Terada N., Hamazaki T., Oka M., Hoki M., Mastalerz D.M., Nakano Y., et al. (2002) Nature 16, 542–545.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  1. 1.John A. Moran Eye CenterUniversity of Utah School of MedicineSalt Lake City

Personalised recommendations