Skip to main content
Log in

Retinal remodeling in inherited photoreceptor degenerations

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Photoreceptor degenerations initiated in rods or the retinal pigmented epithelium usually evoke secondary cone death and sensory deafferentation of the surviving neural retina. In the mature central nervous system, deafferentation evokes atrophy and connective re-patterning. It has been assumed that the neural retina does not remodel, and that it is a passive survivor. Screening of advanced stages of human and rodent retinal degenerations with computational molecular phenotyping has exposed a prolonged period of aggressive negative remodeling in which neurons migrate along aberrant glial columns and seals, restructuring the adult neural retina (1). Many neurons die, but survivors rewire the remnant inner plexiform layer (IPL), forming thousands of novel ectopic microneuromas in the remnant inner nuclear layer (INL). Bipolar and amacrine cells engage in new circuits that are most likely corruptive. Remodeling in human and rodent retinas emerges regardless of the molecular defects that initially trigger retinal degenerations. Although remodeling may constrain therapeutic intervals for molecular, cellular, or bionic rescue, the exposure of intrinsic retinal remodeling by the removal of sensory control in retinal degenerations suggests that neuronal organization in the normal retina may be more plastic than previously believed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones B.W., Watt C.B., Frederick J.M., Baehr W., Chen C.K., Levine E.M., et al. (2003) J. Comp. Neurol. 464, 1–16.

    Article  PubMed  Google Scholar 

  2. http://www.sph.uth.tmc.edu/RetNet/

  3. Young M.J., Ray J., Whiteley S.J.O., Klassen H., and Gage F.H. (2000) Mol. Cell. Neurosci. 16, 197–205.

    Article  PubMed  CAS  Google Scholar 

  4. Coffey P.J., Girman S., Wang S.M., Hetherington L., Keegan D.J., Adamson P., et al. (2002) Nature Neuroscience 5, 53–56.

    Article  PubMed  CAS  Google Scholar 

  5. Humayun M.S., de Juane E.J., Dagnelie G., Greenberg R.J., Propst R.H., and Phillips D.H. (1996) Arch. Ophthalmol. 114, 40–46.

    PubMed  CAS  Google Scholar 

  6. Chow A.Y. and Chow V.Y. (1997) Neurosci. Lett. 225, 13–16.

    Article  PubMed  CAS  Google Scholar 

  7. Zrenner E., Gabel V.P., Haemmerie H., Hoefflinger B., and Shubert M. (1998) Ophthalmic Res. 30, 197–198.

    Article  Google Scholar 

  8. Scarlatis G. (2000) MSJAMA 283, 2297.

    CAS  Google Scholar 

  9. Zrenner E. (2002) Science 295, 1022–1025.

    Article  PubMed  CAS  Google Scholar 

  10. Fariss R.N., Li Z.-Y., and Milam A.H. (2000) Am. J. Ophthalmol. 129, 215–223.

    Article  PubMed  CAS  Google Scholar 

  11. Strettoi E. and Pignatelli V. (2000) Proc. Natl. Acad. Sci. USA 97, 11,020–11,025.

    Article  CAS  Google Scholar 

  12. Strettoi E., Porciatti V., Falsini B., Pignatelli V., and Rossi C. (2002) J. Neurosci. 22, 5492–5504.

    PubMed  CAS  Google Scholar 

  13. Fei Y. (2002) Mol. Vis. 8, 306–314.

    PubMed  CAS  Google Scholar 

  14. Marc R.E., Murry R.F., and Basinger S.F. (1995) J. Neurosci. 15, 5106–5129.

    PubMed  CAS  Google Scholar 

  15. Marc R.E. and Jones B.W. (2002) J. Neurosci. 22, 412–427.

    Google Scholar 

  16. Marc R.E. and Liu W. (2000) J. Comp. Neurol. 425, 560–582.

    Article  PubMed  CAS  Google Scholar 

  17. Marc R.E., Jones B.W., Watt C.B., and Strettoi E. (2003) Prog. Ret. Eye Res. 22, 607–655.

    Article  Google Scholar 

  18. Marc R.E. (1999) J. Comp. Neurol. 407, 47–64.

    Article  PubMed  CAS  Google Scholar 

  19. Naka K. (1977) J. Neurophysiol. 40, 26–43.

    Article  PubMed  CAS  Google Scholar 

  20. Frederick J.M., Krasnoperova N.V., Hoffmann K., Church-Kopish J., Rüther K., Howes K., Lem J., and Baehr W. (2001) Investig. Ophthalmol. Vis. Sci. 42, 826–833.

    CAS  Google Scholar 

  21. Mohand-Said S., Deudon-Combe A., Hicks D., Simonutti M., Forster V., Fintz A.-C., et al. (1998) Proc. Natl. Acad. Sci. USA 95, 8357–8362.

    Article  PubMed  CAS  Google Scholar 

  22. D’Cruz P.M., Yasumura D., Weir J., Matthes M.T., Abderrahim H., LaVail M.M., and Vollrath D. (2000) Hum. Mol. Genet. 9, 645–651.

    Article  PubMed  CAS  Google Scholar 

  23. Machida S., Kondo M., Jamison J.A., Khan N.W., Kononen L.T., Sugawara T., Bush R.A., and Sieving P.A. (2000) Investig. Ophthalmol. Vis. Sci. 41, 3200–3208.

    CAS  Google Scholar 

  24. Dowling J.E. (1968) Proc. R. Soc. Lond. Sec. B. Biol. Sci. 158, 232–252.

    Google Scholar 

  25. Euler T., Schneider H., and Wässle H. (1996) J. Neurosci. 16, 2934–2944.

    PubMed  CAS  Google Scholar 

  26. Lewis G.P., Charteris D.G., Sethi C.S., and Fisher S.K. (2002) Eye 16, 375–387.

    Article  PubMed  CAS  Google Scholar 

  27. Tasic B., Nabholz C.E., Baldwin K.K., Kim Y., Rueckert E.H., Ribich S.A., et al. (2002) Molecular Cell 10, 21–33.

    Article  PubMed  CAS  Google Scholar 

  28. Von Noorden G.K. and Crawford M.L.J. (1978) Investig. Ophthalmol. Vis. Sci. 17, 762–768.

    Google Scholar 

  29. Buonomano D.V. and Merzenich M.M. (1998) Annu. Rev. Neurosci. 21, 149–186.

    Article  PubMed  CAS  Google Scholar 

  30. Jones E.G. and Pons T.P. (1998) Science 282, 1121–1125.

    Article  PubMed  CAS  Google Scholar 

  31. Tian N. and Copenhagen D.R. (2001) Neuron 32, 439–449.

    Article  PubMed  CAS  Google Scholar 

  32. Terada N., Hamazaki T., Oka M., Hoki M., Mastalerz D.M., Nakano Y., et al. (2002) Nature 16, 542–545.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Marc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marc, R.E., Jones, B.W. Retinal remodeling in inherited photoreceptor degenerations. Mol Neurobiol 28, 139–147 (2003). https://doi.org/10.1385/MN:28:2:139

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:28:2:139

Index Entries

Navigation