Advertisement

Molecular Neurobiology

, Volume 27, Issue 2, pp 163–176 | Cite as

Microglial functions and proteases

  • Hiroshi Nakanishi
Article

Abstract

There is accumulating evidence that intracellular and extracellular proteases of microglia contribute to various events in the central nervous system (CNS) through both nonspecific and limited proteolysis. Cathepsin E and cathepsin S, endosomal/lysosomal proteases, have been shown to play important roles in the major histocompatibility complex (MHC) class II-mediated antigen presentation of microglia by processing of exogenous antigens and degradation of the invariant chain associated with MHC class II molecules, respectively. Some members of cathepsins are also involved in neuronal death after secreted from microglia and clearance of phagocytosed amyloid-β peptides. Tissue-type plasminogen activator, a serine protease, secreted from microglia participates in neuronal death, enhancement of N-methyl-d-aspartate receptor-mediated neuronal responses, and activation of microglia via either proteolytic or nonproteolytic activity. Calpain, a calcium-dependent cysteine protease, has been shown to play a pivotal role in the pathogenesis of multiple sclerosis by degrading myelin proteins extracellulary. Furthermore, matrix metalloproteases secreted from microglia also receive great attention as mediators of inflammation and tissue degradation through processing of pro-inflammatory cytokines and damage to the blood-brain barrier. The growing knowledge about proteolytic events mediated by microglial proteases will not only contribute to better understanding of microglial functions in the CNS but also may aid in the development of protease inhibitors as novel neuroprotective agents.

Index Entries

Microglia protease antigen presentation neuronal death inflammation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baranes D., Lederfein D., Huang Y. -Y., Chen M., Bailey C. H., and Kandel E. R. (1998) Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy pathway. Neuron 21, 813–825.PubMedCrossRefGoogle Scholar
  2. Bennett K., Levine T., Ellis J. S., Peanasky R. J., Samloff I. M., Kay J., et al. (1992) Antigen processing for presentation by class II major histocompatibility complex requires cleavage by cathepsin E. Eur. J. Immunol. 22, 1519–1524.PubMedCrossRefGoogle Scholar
  3. Centonze D., Saulle E., Pisani A., Bousi P., Tropepi D., Bernardi G., et al. (2002) Tissue plasminogen activator is required for striatal post-ischemic synaptic potentiation. Neuroreport 13, 115–118.PubMedCrossRefGoogle Scholar
  4. Chauvet N., Palin K., Verrier D., Poole S., Dantzer R., and Lestage J. (2001) Rat microglial cells secrete predominantly the precursor of interleukin-1β in response to lipopolysaccharide. Eur. J. Neurosci. 14, 609–617.PubMedCrossRefGoogle Scholar
  5. Colton C. A., Krei J. E., Chen W.-T., and Monsky W. L. (1993) Protease production by cultured microglia: substrate gel analysis and immobilized matrix degradation. J. Neurosci. Res. 35, 297–304.PubMedCrossRefGoogle Scholar
  6. Deussing J., Roth W., Saftig P., Peters C., Ploegh H. L., and Villadangos J. A. (1998) Cathepsins B and D are dispensable for major histocompatibility complex class II-mediated antigen presentation. Proc. Natl. Acad. Sci. USA 95, 4516–4521.PubMedCrossRefGoogle Scholar
  7. Diment S. (1990) Different roles for thiol and aspartyl proteases in antigen presentation of ovalbumin. J. Immunol. 145, 417–422.PubMedGoogle Scholar
  8. Flavin M. P. amd Zhao G. (2001) Tissue plasminogen activator protects hippocampal neurons from oxygen-glucose deprivation injury. J. Neurosci. Res. 63, 388–394.PubMedCrossRefGoogle Scholar
  9. Flavin M. P., Zhao G., and Ho L. T. (2000) Microglial tissue plasminogen activator (tPA) triggers neuronal apoptosis in vitro. Glia 29, 347–354.PubMedCrossRefGoogle Scholar
  10. Gingrich M. B., Junge C. E., Lyuboslavsky P., and Traynelis S. F. (2000) Potentiation of NMDA receptor function by serine protease thrombin. J. Neurosci. 20, 4582–4595.PubMedGoogle Scholar
  11. Giulian D., Vaca K., and Corpus M. (1993) Brain glia release factors with opposing actions upon neuronal survival. J. Neurosci. 13, 29–37.PubMedGoogle Scholar
  12. Gresser O., Weber E., Hellwing A., Riese S., and Regnier-Vigouroux A. (2001) Immunocompetent astrocytes and microglia display major differences in the processing of the invariant chain and in the expression of active cathepsin L and cathepsin S. Eur. J. Immunol. 31, 1813–1824.PubMedCrossRefGoogle Scholar
  13. Guicciardi M. E., Deussing J., Miyoshi H., Bronk S. F., Svingen P. S., Peters C., et al. (2000) Cathepsin B contributes to TNF-α-mediated hapatocyte apoptosis by promoting mitochondria release of cytochrom c. J. Clin. Invest. 106, 1127–1137.PubMedGoogle Scholar
  14. Hamazaki H. (1996) Cathepsin D is involved in the clearance of Alzheimer’s β-amyloid protein. FEBS Lett. 396, 139–142.PubMedCrossRefGoogle Scholar
  15. Huang Y.-Y., Bach M. E., Lipp H. -P., Zhuo M., Wolfer D. P., Hawkins R. D., et al. (1996) Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc. Natl. Acad. Sci. USA 93, 8699–8704.PubMedCrossRefGoogle Scholar
  16. Husemann J., Loike J. D., Kodama T., and Silverstein S. C. (2001) Scavenger receptor class B type I (SR-BI) mediates adhesion of neonatal murine microglia to fibrillar β-amyloid. J. Neuroimmunol. 114, 142–150.PubMedCrossRefGoogle Scholar
  17. Inoue K., Koizumi S., Nakajima K., Hamanoue M., and Kohsaka S. (1994) Modulatory effect of plasminogen on NMDA-induced increase in intracellular free calcium concentration in rat cultured hippocampal neurons. Neurosci. Lett. 179, 87–90.PubMedCrossRefGoogle Scholar
  18. Kakimura J., Kitamura Y., Takata K., Umeki M., Suzuki S., Shibagaki K., et al. (2002) microglial activation and amyloid-β clearance induced by exogenous heat-shock proteins. FASEB J. 16, 601–603.PubMedGoogle Scholar
  19. Kingham P. J. and Pocock J. M. (2000) Microglial apoptosis induced by chromogranin A is mediated by mithochondrial depolarization and the permeability transition but not by cytochrome c release. J. Neurochem. 74, 1452–1452.PubMedCrossRefGoogle Scholar
  20. Kingham P. J. and Pocock J. M. (2001) Microglial secreted cathepsin B induces neuronal apoptosis. J. Neurochem. 76, 1475–1484.PubMedCrossRefGoogle Scholar
  21. Koike M., Nakanishi H., Saftig P., Ezaki J., Isahara K., Ohsawa Y., et al. (2000) Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J. Neurosci. 20, 6869–6906.Google Scholar
  22. Kolson D. L., Lavi E., and Gonzalez-Scarano F. (1998) The effects of human immunodeficiency virus in the central nervous system. Adv. Virus Res. 50, 1–47.PubMedCrossRefGoogle Scholar
  23. Lee J., Hurt J., Lee P., Kim J. Y., Cho N., Kim S. Y., et al. (2001) Dual role of inflammatory stimuli in activation-induced cell death of mouse microglial cells. J. Biol. Chem. 276, 32,956–32,965.Google Scholar
  24. Liu B., Wang K., Gao H. -M., Mandavilli B., Wang J. -Y., and Hong J. -S. (2001) Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J. Neurochem. 77, 182–189.PubMedCrossRefGoogle Scholar
  25. Madani R., Hulo S., Toni N., Madani H., Steimer T., Muller D., et al. (1999) Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. EMBO J. 18, 3007–3012.PubMedCrossRefGoogle Scholar
  26. Maric M. A., Taylor M. D., and Blum J. S. (1994) Endosomal aspartic proteinases are required for invariant-chain processing. Proc. Natl. Acad. Sci. USA 91, 2171–2175.PubMedCrossRefGoogle Scholar
  27. McDermott J. R. and Gibson A. M. (1996) Degradation of Alzheimer’s β-amyloid protein by human cathepsin D. Neuroreport 7, 2163–2166.PubMedCrossRefGoogle Scholar
  28. Mittmann T., Luhmann H. J., Schmidt-Kastner R., Eysel U. T., Weigel H., and Heinemann U. (1994) Lesion-induced transient suppression of inhibitory function in rat neocortex in vitro. Neuroscience 60, 891–906.PubMedCrossRefGoogle Scholar
  29. Miyazaki S., Katayama Y., Furuichi M., Kano T., Yoshino A., and Tsubokawa T. (1994) N-methyl-d-asspartate receptor mediated, prolonged after-discharges of CA1 pyramidal cells following transient cerebral ischemia in the rat hippocampus. Brain Res. 657, 325–329.PubMedCrossRefGoogle Scholar
  30. Nakagami Y., Abe K., Nishiyama N., and Matsuki N. (2000) Laminin degradation by plasmin regulates long-term potentiation. J. Neurosci. 20, 2002–2010.Google Scholar
  31. Nakajima K., Tsuzaki N., Shimojo M., Hamanoue M., and Kohsaka S. (1992) Microglia isolated from rat brain secrete a urokinase-type plasminogen activator. Brain Res. 577, 258–292.CrossRefGoogle Scholar
  32. Nakanishi H., Zhang J., Koike M., Nishioku T., Okamoto Y., Kominami E., et al. (2001) Involvement of nitric oxide released from microgliamacrophages in pathological changes of cathepsin D-deficient mice. J. Neurosci. 21, 7526–7533.PubMedGoogle Scholar
  33. Nicole O., Docagne F., Ali C., Margailli I., Carmeliet P., MacKenzie E. T., et al. (2001) The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nature Med. 7, 59–64.PubMedCrossRefGoogle Scholar
  34. Nishioku T., Takai N., Miyamaoto K. -I., Murao K., Hara C., Yamamoto K., et al. (2000) Involvement of caspase 3-like protease in methylmercury-induced apoptosis of primary cultured rat cerebral microglia. Brain Res. 871, 160–164.PubMedCrossRefGoogle Scholar
  35. Nishioku T., Hashimoto K., Yamashita K., Liou S. -Y., Kagamiishi Y., Maegawa H., et al. (2002) Involvement of cathepsin E in exogenous antigen processing in primary cultured murine microglia. J. Biol. Chem. 277, 4821–4822.CrossRefGoogle Scholar
  36. Paresce D. M., Chung H., and Maxfield F. R. (1997) Slow degradation of aggregates of the Alzheimer’s disease amyloid β-protein by microglial cells. J. Biol. Chem. 46, 29,390–29,397.Google Scholar
  37. Paresce D. M., Ghosh R. N., and Maxfield F. R. (1996) Microglial cells internalize aggregates of the Altzheimer’s disease amyloid β-protein via scavenger receptor. Neuron 17, 553–565.PubMedCrossRefGoogle Scholar
  38. Petanceska S., Canoll P., and Devi L. A. L. (1996) Expression of rat cathepsin S in phagocytic cells. J. Biol. Chem. 271, 4403–4409.PubMedCrossRefGoogle Scholar
  39. Piani D. and Fontana A. (1994) Involvement of the cystine transport system Xc- in the macrophage-induced glutamate-dependent cytotoxicity to neurons. J. Immunol. 152, 3578–3585.PubMedGoogle Scholar
  40. Qiu W. Q., Walsh D. M. W., Ye Z., Vekrellis K., Zhang J., Podlisny M. B., et al. (1998) Insulin-degrading enzyme regulates extracellar levels of amyloid β-protein by degradation. J. Biol. Chem. 273, 32,730–32,738.Google Scholar
  41. Qiu W. Q., Ye Z., Kholodenko D., Seubert P., and Selkoe D. J. (1997) Degradation of amyloid β-protein by a metalloprotease secreted by microglia and other neural and non-neural cells. J. Biol. Chem. 272, 6641–6646.PubMedCrossRefGoogle Scholar
  42. Riese R. J. and Chapman H. A. (2000) Cathepsins and compartmentalization in antigen presentation. Curr. Opin. Immunol. 12, 107–113.PubMedCrossRefGoogle Scholar
  43. Rodriguez G. M. and Diment S. (1992) Role of cathepsin D in antigen presentation of ovalbumin. J. Immunol. 19, 2894–2898.Google Scholar
  44. Rogove A., Saio C. -J., Keyt B., Strickland S., and Tsirka S. E. (1999) Activation of microglia reveals a non-proteolytyc cytokine function tissue plasminogen activator in the central nervous system. J. Cell Sci. 112, 4007–4016.PubMedGoogle Scholar
  45. Ryan R. E., Sloane B. F., Sameni M., and Wood P. L. (1995) Microglial cathepsin B: an immunological examination of cellular and secreted species. J. Neurochem. 65, 1035–1045.PubMedCrossRefGoogle Scholar
  46. Ryu J., Ryo H., Jou I., and Joe E. (2000) Thrombin induces NO release from cultured rat microglia via protein kinase C, mitogen-activated protein kinase, and NF-κB. J. Biol. Chem. 275, 29,955–29,959.Google Scholar
  47. Santambrogio L., Belyanskaya S. L., Fisher F. R., Cipriani B., Brosnan C. F., Ricciardi-Castagnoli P., et al. (2001) Developmental plasticity of CNS microglia. Proc. Natl. Acad. Sci. USA 98, 6295–6300.PubMedCrossRefGoogle Scholar
  48. Sastradipura D. F., Nakanishi H., Tsukuba T., Nishishita K., Sakai H., Kato Y., et al. (1998) Identification of cellular compartment involved in processing of cathepsin E in primary cultures of rat microglia. J. Neurochem. 70, 2045–2056.PubMedCrossRefGoogle Scholar
  49. Schenk D., Barbour R., Dunn W., Gordon G., Grajeda H., Guido T., et al. (1999) Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177.PubMedCrossRefGoogle Scholar
  50. Schotte P., Van Criekinge W., Van der Craen M., Van Loo G., Desmedt M., Grooten J., et al. (1998) Cathepsin B-mediated activation of the proinflammatory caspase-11. Biochem. Biophys. Res. Commun. 251, 379–387.PubMedCrossRefGoogle Scholar
  51. Sealy L., Mota F., Rayment N., Tatnell P., Kay J., and Chain B. (1996) Regulation of cathepsin E expression during human B cell differentiation in vitro. Eur. J. Immunol. 26, 1838–1843.PubMedCrossRefGoogle Scholar
  52. Shields D. C., Schaecher K. E., Saido T. C., and Banil N. L. (1999) A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain. Proc. Natl. Acad. Sci. USA 96, 11,486–11,491.CrossRefGoogle Scholar
  53. Shields D. C., Tyor W. R., Deibler G. E., Hogan E. L., and Banik N. L. (1998) Increased calpain expression in activated glial and inflammatory cells in experimental allergic encephalomyelitis. Proc. Natl. Acad. Sci. USA 95, 5768–5772.PubMedCrossRefGoogle Scholar
  54. Siao C.-J. and Tsirka S. E. (2002) Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II. J. Neurosci. 22, 3352–3358.PubMedGoogle Scholar
  55. Stohwasser R., Giesebrecht J., Kraft R., Müller E.-C., Häusler K. G., Kettenmann H., et al. (2000) Biochemical analysis of proteasomes from mouse microglia: Induction of immunoproteasomes by interferon-γ and lipopolysaccharide. Glia 29, 355–365.PubMedCrossRefGoogle Scholar
  56. Stoka V., Turk B., Schendel S. L., Kim T.-H., Cirman T., Snipas S. J., et al. (2001) Lysosomal protease pathway to apoptosis. Cleavage of Bid, not procaspases, is the most likely route. J. Bio. Chem. 276, 3149–3157.CrossRefGoogle Scholar
  57. Suo Z., Wu M., Ameenuddin S., Anderson H. E., Zoloty J. E., Citron B. A., et al. (2002) Participation of protease-activated receptor-1 in thrombin-induced microglial activation. J. Neurochem. 80, 655–666.PubMedCrossRefGoogle Scholar
  58. Takai N., Nakanishi H., Tanabe K., Nishioku T., Sugiyama T., Fujiwara M., et al. (1998) Involvement of caspase-like proteases in apoptosis of neuronal PC12 cells and primary cultured microglia induced by 6-hydroxydopamine. J. Neurosci Res. 54, 214–222.PubMedCrossRefGoogle Scholar
  59. Tsirka S. E., Gualandrils A., Amaral D. G., and Strickland S. (1995) Excitation-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 377, 340–344.PubMedCrossRefGoogle Scholar
  60. Vancompernolle K., Van Herreweghe F., Pynaert G., Van der Craen M., De Vos K., Totty N., et al. (1998) Atracyloside-induced release of cathepisn B, a protease with caspase-processing ctivity. FEBS Lett. 438, 150–158.PubMedCrossRefGoogle Scholar
  61. van Noort J. M. and Jacobs M. J. (1994) Cathepsin D, but not cathepsin B, releases T cell stimulatory fragments from lysozyme that are functional in the context of multiple murine class II MHC molecules. Eur. J. Immunol. 24, 2175–2180.PubMedCrossRefGoogle Scholar
  62. Villadangos J. A., Bryan R. A. R., Deussing J., Driessen C., Lennon-Dumenil A., Riese R. J., et al. (1999) Proteases involved in MHC class II antigen presentation. Immun. Rev. 172, 109–120.PubMedCrossRefGoogle Scholar
  63. Villadangos J. A., Riese R. J., Peters C., Chapman H. A., and Ploegh H. L. (1997) Degradation of mouse invariant chain: roles of cathepsins S and D and the influence of major histocompatibility complex polymorphism. J. Exp. Med. 186, 549–560.PubMedCrossRefGoogle Scholar
  64. Zhang T., Maekawa Y., Yasutomo K., Ishikawa H., Nashed B. F., Dainichi T., et al. (2000) Pepstatin A-sensitive aspartic proteases in lysosome are involved in degradation of invariant chain and antigen-processing in antigen presenting cells of mice infected with Leishmania major. Biochem. Biophys. Res. Commun. 276, 693–701.PubMedCrossRefGoogle Scholar
  65. Zhuo M., Holtzman D. M., Li Y., Osaka H., DeMaro J., Jacquin M., et al. (2000) Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J. Neurosci. 20, 542–549.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  1. 1.Laboratory of Oral Aging Science, Faculty of Dental SciencesKyushu UniversityFukuokaJapan

Personalised recommendations