Advertisement

Molecular Neurobiology

, Volume 25, Issue 3, pp 233–244 | Cite as

Mechanisms underlying cytokine-mediated cell-fate regulation in the nervous system

  • Kinichi Nakashima
  • Tetsuya TagaEmail author
Article

Abstract

Neurons, astrocytes, and oligodendrocytes, the three major cell types in the nervous system, are generated from common neural stem cells during development. Recent studies have provided evidence that neural stem cells are preserved in the adult brain, where, until recently, neurogenesis had not been considered to take place. The mechanisms that govern the fate of neural stem-cell determination have yet to be clarified. It is becoming apparent that soluble protein mediators referred to as cytokines play critical roles in cell-fate determination. For instance, bone morphogenetic proteins (BMPs) alter the fate of developing brain cells from a neurogenic differentiation to an astrocytic one. Different types of cytokines sometimes cooperate to modulate differentiation. For example, the interleukin-6 (IL-6) family cytokines and the BMP family cytokines act in synergy to elaborate astrocyte differentiation. In this review, we focus on recent progress that addresses the molecular mechanisms whereby cytokines regulate the fate of cells in neural lineages. We also discuss possible clinical applications of these findings to minimize the undesirable gliogenesis that occurs after neural stem-cell implantation and nerve injury.

Index Entries

IL-6 family of cytokines LIF BMP STAT Smad HLH neural stem cell astocytogenesis neurogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Elson G. C., Lelievre E., Guillet C., Chevalier S., Plun-Favreau H., Froger J., et al. (2000) CLF associates with CLC to form a functional heteromeric ligand for the CNTF receptor complex. Nat. Neurosci. 3, 867–872.PubMedCrossRefGoogle Scholar
  2. 2.
    Lelievre E., Plun-Favreau H., Chevalier S., Froger J., Guillet C., Elson G. C., et al. (2001) Signaling pathways recruited by the cardiotrophin-like cytokine/cytokine-like factor-1 composite cytokine: specific requirement of the membrane-bound form of ciliary neurotrophic factor receptor alpha component. J. Biol. Chem. 276, 22476–22484.PubMedCrossRefGoogle Scholar
  3. 3.
    Taga T. and Kishimoto T. (1997) Gp130 and the interleukin-6 family of cytokines. Annu. Rev. Immunol. 15, 797–819.PubMedCrossRefGoogle Scholar
  4. 4.
    Derynck R., Zhang Y., and Feng X. H. (1998) Smads: transcriptional activators of TGF-beta responses. Cell 95, 737–740.PubMedCrossRefGoogle Scholar
  5. 5.
    Heldin C. H., Miyazono K., and ten Dijke P. (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–471.PubMedCrossRefGoogle Scholar
  6. 6.
    Massague J. and Chen Y. G. (2000) Controlling TGF-beta signaling. Genes Dev. 14, 627–644.PubMedGoogle Scholar
  7. 7.
    Hata A., Lagna G., Massague J., and Hemmati-Brivanlou A. (1998) Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev. 12, 186–197.PubMedGoogle Scholar
  8. 8.
    Imamura T., Takase M., Nishihara A., Oeda E., Hanai J., Kawabata M., and Miyazono K. (1997) Smad6 inhibits signalling by the TGF-beta superfamily. Nature 389, 622–626.PubMedCrossRefGoogle Scholar
  9. 9.
    Nakao A., Afrakhte M., Moren A., Nakayama T., Christian J. L., Heuchel R., et al. (1997) Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 389, 631–635.PubMedCrossRefGoogle Scholar
  10. 10.
    Anderson D. J. (2001) Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron 30, 19–35.PubMedCrossRefGoogle Scholar
  11. 11.
    Gage F. H. (2000) Mammalian neural stem cells. Science 287, 1433–1438.PubMedCrossRefGoogle Scholar
  12. 12.
    McKay R. (1997) Stem cells in the central nervous system. Science 276, 66–71.PubMedCrossRefGoogle Scholar
  13. 13.
    Bonni A., Sun Y., Nadal-Vicens M., Bhatt A., Frank D. A., Rozovsky I., et al. (1997) Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278, 477–483.PubMedCrossRefGoogle Scholar
  14. 14.
    Gross R. E., Mehler M. F., Mabie P. C., Zang Z., Santschi L., and Kessler J. A. (1996) Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17, 595–606.PubMedCrossRefGoogle Scholar
  15. 15.
    Johe K. K., Hazel T. G., Muller T., Dugich-Djordjevic M. M., and McKay R. D. (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 10, 3129–3140.PubMedCrossRefGoogle Scholar
  16. 16.
    Mabie P. C., Mehler M. F., and Kessler J. A. (1999) Multiple roles of bone morphogenetic protein signaling in the regulation of cortical cell number and phenotype. J. Neurosci. 19, 7077–7088.PubMedGoogle Scholar
  17. 17.
    Mehler M. F., Mabie P. C., Zhang D., and Kessler J. A. (1997) Bone morphogenetic proteins in the nervous system. Trends Neurosci. 20, 309–317.PubMedCrossRefGoogle Scholar
  18. 18.
    Nakashima K., Yanagisawa M., Arakawa H., Kimura N., Hisatsune T., Kawabata M., et al. (1999) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284, 479–482.PubMedCrossRefGoogle Scholar
  19. 19.
    Nakashima K., Yanagisawa M., Arakawa H., and Taga T. (1999) Astrocyte differentiation mediated by mediated by LIF in cooperation with BMP2. FEBS Lett. 457, 43–46.PubMedCrossRefGoogle Scholar
  20. 20.
    Ochiai W., Yanagisawa M., Takizawa T., Nakashima K., and Taga T. (2001) Astrocyte differentiation of fetal neuroepithelial cells involving cardiotrophin-1-induced activation of stat3. Cytokine 14, 264–271.PubMedCrossRefGoogle Scholar
  21. 21.
    Yanagisawa M., Nakashima K., Takizawa T., Ochiai W., Arakawa H., and Taga T. (2001) Signaling crosstalk underlying synergistic induction of astrocyte differentiation by BMPs and IL-6 family of cytokines. FEBS Lett. 489, 139–143.PubMedCrossRefGoogle Scholar
  22. 22.
    Chrivia J. C., Kwok R. P., Lamb N., Hagiwara M., Montminy M. R., and Goodman R. H. (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859.PubMedCrossRefGoogle Scholar
  23. 23.
    Kamei Y., Xu L., Heinzel T., Torchia J., Kurokawa R., Gloss B., et al. (1996) A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414.PubMedCrossRefGoogle Scholar
  24. 24.
    Kurokawa R., Kalafus D., Ogliastro M. H., Kioussi C., Xu L., Torchia J., et al. (1998) Differential use of CREB binding protein-coactivator complexes. Science 279, 700–703.PubMedCrossRefGoogle Scholar
  25. 25.
    Yanagisawa M., Takizawa T., Ochiai W., Uemura A., Nakashima K., and Taga T. (2001) Fate alteration of neuroepithelial cells from neurogenesis to astrocytogenesis by bone morphogenetic proteins. Neurosci. Res. 41, 391–396.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang D., Mehler M. F., Song Q., and Kessler J. A. (1998) Development of bone morphogenetic protein receptors in the nervous system and possible roles in regulating trkC expression. J. Neurosci. 18, 3314–3326.PubMedGoogle Scholar
  27. 27.
    Nakashima K., Wiese S., Yanagisawa M., Arakawa H., Kimura N., Hisatsune T., et al. (1999) Developmental requirement of gp130 signaling in neuronal survival and astrocyte differentiation. J. Neurosci. 19, 5429–5434.PubMedGoogle Scholar
  28. 28.
    Nakashima K., Takizawa T., Ochiai W., Yanagisawa M., Hisatsune T., Nakafuku M., et al. (2001) BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis. Proc. Natl. Acad. Sci. USA. 98, 5868–5873.PubMedCrossRefGoogle Scholar
  29. 29.
    Kageyama R. and Nakanishi S. (1997) Helixloop-helix factors in growth and differentiation of the vertebrate nervous system. Curr. Opin. Genet. Dev. 7, 659–665.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee J. E. (1997) Basic helix-loop-helix genes in neural development. Curr. Opin. Neurobiol. 7, 13–20.PubMedCrossRefGoogle Scholar
  31. 31.
    Massari M. E. and Murre C. (2000) Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20, 429–440.CrossRefGoogle Scholar
  32. 32.
    Akazawa C., Sasai Y., Nakanishi S., and Kageyama R. (1992) Molecular characterization of a rat negative regulator with a basic helix-loop-helix structure predominantly expressed in the developing nervous system. J. Biol. Chem. 267, 21879–21885.PubMedGoogle Scholar
  33. 33.
    Ohtsuka T., Ishibashi M., Gradwohl G., Nakanishi S., Guillemot F., and Kageyama R. (1999) Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J. 18, 2196–2207.PubMedCrossRefGoogle Scholar
  34. 34.
    Sasai Y., Kageyama R., Tagawa Y., Shigemoto R., and Nakanishi S. (1992) Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev. 6, 2620–2634.PubMedCrossRefGoogle Scholar
  35. 35.
    Benezra R., Davis R. L., Lockshon D., Turner D. L., and Weintraub H. (1990) The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61, 49–59.PubMedCrossRefGoogle Scholar
  36. 36.
    Christy B. A., Sanders L. K., Lau L. F., Copeland N. G., Jenkins N. A., and Nathans D. (1991) An Id-related helix-loop-helix protein encoded by a growth factor-inducible gene. Proc. Natl. Acad. Sci. USA 88, 1815–1819.PubMedCrossRefGoogle Scholar
  37. 37.
    Norton J. D., Deed R. W., Craggs G., and Sablitzky F. (1998) Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol. 8, 58–65.PubMedCrossRefGoogle Scholar
  38. 38.
    Jen Y., Weintraub H., and Benezra R. (1992) Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev. 6, 1466–1479.PubMedCrossRefGoogle Scholar
  39. 39.
    Duncan M., DiCicco-Bloom E. M., Xiang X., Benezra R., and Chada K. (1992) The gene for the helix-loop-helix protein, Id, is specifically expressed in neural precursors. Dev. Biol. 154, 1–10.PubMedCrossRefGoogle Scholar
  40. 40.
    Ellmeier W. and Weith A. (1995) Expression of the helix-loop-helix gene Id3 during murine embryonic development. Dev. Dyn. 203, 163–173.PubMedGoogle Scholar
  41. 41.
    Jen Y., Manova K., and Benezra R. (1997) Each member of the Id gene family exhibits a unique expression pattern in mouse gastrulation and neurogenesis. Dev. Dyn. 208, 92–106.PubMedCrossRefGoogle Scholar
  42. 42.
    Lyden D., Young A. Z., Zagzag D., Yan W., Gerald W., O’Reilly R., et al. (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401, 670–677.PubMedCrossRefGoogle Scholar
  43. 43.
    Tanigaki K., Nogaki F., Takahashi J., Tashiro K., Kurooka H., and Honjo T. (2001) Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29, 45–55.PubMedCrossRefGoogle Scholar
  44. 44.
    Furukawa T., Mukherjee S., Bao Z. Z., Morrow E. M., and Cepko C. L. (2000) rax, Hes1, and notch1 promote the formation of Muller glia by postnatal retinal progenitor cells. Neuron 26, 383–394.PubMedCrossRefGoogle Scholar
  45. 45.
    Hojo M., Ohtsuka T., Hashimoto N., Gradwohl G., Guillemot F., and Kageyama R. (2000) Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development 127, 2515–2522.PubMedGoogle Scholar
  46. 46.
    Li W., Cogswell C. A., and LoTurco J. J. (1998) Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J. Neurosci. 18, 8853–62.PubMedGoogle Scholar
  47. 47.
    Sun Y., Nadal-Vicens M., Misono S., Lin M. Z., Zubiaga A., Hua X., et al. (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104, 365–376.PubMedCrossRefGoogle Scholar
  48. 48.
    Bird A. P. and Wolffe A. P. (1999) Methylation-induced repression: belts, braces, and chromatin. Cell 99, 451–454.PubMedCrossRefGoogle Scholar
  49. 48.
    Qian X., Shen Q., Goderie S. K., He W., Capela A., Davis A. A., and Temple S. (2000) Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28, 69–80.PubMedCrossRefGoogle Scholar
  50. 49.
    Razin A. (1998) CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBO J. 17, 4905–4908.PubMedCrossRefGoogle Scholar
  51. 50.
    Robertson K. D. and Jones P. A. (2000) DNA methylation: past, present and future directions. Carcinogenesis 21, 461–467.PubMedCrossRefGoogle Scholar
  52. 51.
    Takizawa T., Nakashima K., Namihira M., Ochiai W., Uemura A., Yanagisawa M., et al. (2001) DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev. Cell 1, 749–758.PubMedCrossRefGoogle Scholar
  53. 52.
    Johansson C. B., Momma S., Clarke D. L., Risling M., Lendahl U., and Frisen J. (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25–34.PubMedCrossRefGoogle Scholar
  54. 53.
    Setoguchi T., Yone K., Matsuoka E., Takenouchi N., Nakashima K., Sakou T., et al. (2001) Traumatic injury-induced BMP7 expression in the adult rat spinal cord. Brain Res., 921, 219–225.PubMedCrossRefGoogle Scholar
  55. 54.
    Gage F. H., Coates P. W., Palmer T. D., Kuhn H. G., Fisher L. J., Suhonen J. O., et al. (1995) Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl. Acad. Sci. USA 92, 11879–11883.PubMedCrossRefGoogle Scholar
  56. 55.
    Suhonen J. O., Peterson D. A., Ray J., and Gage F. H. (1996) Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature 383, 624–7.PubMedCrossRefGoogle Scholar
  57. 56.
    Lim D. A., Tramontin A. D., Trevejo J. M., Herrera D. G., García-Verdugo J. M., and Alvarez-Buylla A. (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28, 713–726.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  1. 1.Department of Cell Fate Modulation, Institute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan

Personalised recommendations