Molecular Neurobiology

, Volume 22, Issue 1–3, pp 41–54 | Cite as

Neural activity and survival in the developing nervous system

Abstract

Recent evidence suggests that blockade of normal excitation in the immature nervous system may have profound effects on neuronal survival during the period of natural cell death. Cell loss following depression of electrical activity in the central nervous system (CNS) may explain the neuropsychiatric deficits in humans exposed to alcohol or other CNS depressants during development. Thus, understanding the role of electrical activity in the survival of young neurons is an important goal of modern basic and clinical neuroscience. Here we review the evidence from in vivo and in vitro model systems that electrical activity participates in promoting neuronal survival. We discuss the potential role of moderate elevations of intracellular calcium in promoting survival, and we address the possible ways in which activity and conventional trophic factors may interact.

Index Entries

Neurodevelopment calcium apoptosis programmed cell death 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oppenheim R. W. (1991) Cell death during development of the nervous system. Ann. Rev. Neurosci. 14, 453–501.PubMedCrossRefGoogle Scholar
  2. 2.
    Purves D. and Lichtman J. W. (1985) Principles of Neural Development. Sinauer Associates, Inc., Sunderland, MA.Google Scholar
  3. 3.
    Lewin G. R. and Barde Y. A. (1996) Physiology of the neurotrophins. Ann. Rev. Neurosci. 19, 289–317.CrossRefGoogle Scholar
  4. 4.
    Kaplan D. R. and Miller F. D. (2000) Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391.PubMedCrossRefGoogle Scholar
  5. 5.
    Putcha G. V., Deshmukh M., and Johnson E. M., Jr. (1999) BAX translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, BCL-2, and caspases. J. Neurosci. 19, 7476–7485.PubMedGoogle Scholar
  6. 6.
    Pettmann B. and Henderson C. E. (1998) Neuronal cell death. Neuron 20, 633–647.PubMedCrossRefGoogle Scholar
  7. 7.
    Ghosh A., Carnahan J., and Greenberg M. E. (1994) Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263, 1618–1623.PubMedCrossRefGoogle Scholar
  8. 8.
    Meyer-Franke A., Wilkinson G. A., Kruttgen A., Hu M., Munro E., Hanson M. G., Jr., et al. (1998) Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 21, 681–693.PubMedCrossRefGoogle Scholar
  9. 9.
    Vaillant A. R., Mazzoni I., Tudan C., Boudreau M., Kaplan D. R., and Miller F. D. (1999) Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival. J. Cell Biol. 146, 955–966.PubMedCrossRefGoogle Scholar
  10. 10.
    Linden R. (1994) The survival of developing neurons: a review of afferent control. Neuroscience 58, 671–682.PubMedCrossRefGoogle Scholar
  11. 11.
    Catsicas M., Pequignot Y., and Clarke P. G. (1992) Rapid onset of neuronal death induced by blockade of either axoplasmic transport or action potentials in afferent fibers during brain development. J. Neurosci. 12, 4642–4650.PubMedGoogle Scholar
  12. 12.
    Galli-Resta L., Ensini M., Fusco E., Gravina A., and Margheritti B. (1993) Afferent spontaneous electrical activity promotes the survival of target cells in the developing retinotectal system of the rat. J. Neurosci. 13, 243–250.PubMedGoogle Scholar
  13. 13.
    Rubel E. W., Hyson R. L., and Durham D. (1990) Afferent regulation of neurons in the brain stem auditory system. J. Neurobiol. 21, 169–196.PubMedCrossRefGoogle Scholar
  14. 14.
    Lachica E. A., Kato B. M., Lippe W. R., and Rubel E. W. (1998) Glutamatergic and GABAergic agonists increase in avian cochlear nucleus neurons. J. Neurobiol. 37, 321–337.PubMedCrossRefGoogle Scholar
  15. 15.
    Ikonomidou C., Bosch F., Miksa M., Bittigau P., Vockler J., Dikranian K., et al. (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283, 70–74.PubMedCrossRefGoogle Scholar
  16. 16.
    Ikonomidou C., Ishimaru M. J., Wozniak D. F., Koch C., Bittigau P., Price M. T., et al. (2000) Ethanol-induced apoptotic neurodegeneration and the fetal alcohol syndrome. Science 287, 1056–1060.PubMedCrossRefGoogle Scholar
  17. 17.
    Verhage M., Maia A. S., Plomp J. J., Brussaard A. B., Heeroma J. H., Vermeer H., et al. (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–868.PubMedCrossRefGoogle Scholar
  18. 18.
    Heimer L. and Kalil R. (1978) Rapid transneuronal degeneration and death of cortical neurons following removal of the olfactory bulb in adult rats. J. Comp. Neurol. 178, 559–609.PubMedCrossRefGoogle Scholar
  19. 19.
    Friedman B. and Price J. L. (1986) Plasticity in the olfactory cortex: age-dependent effects of deafferentation. J. Comp. Neurol. 246, 1–19.PubMedCrossRefGoogle Scholar
  20. 20.
    Friedman B. and Price J. L. (1986) Age-dependent cell death in the olfactory cortex: lack of transneuronal degeneration in neonates. J. Comp. Neurol. 246, 20–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Borsello T., Di Luzio A., Ciotti M. T., Calissano P., and Galli C. (2000) Granule neuron DNA damage following deafferentation in adult rats cerebellar cortex: a lesion model. Neuroscience 95, 163–171.PubMedCrossRefGoogle Scholar
  22. 22.
    Fawcett J. P., Bamji S. X., Causing C. G., Aloyz R., Ase A. R., Reader T. A., et al. (1998) Functional evidence that BDNF is an anterograde neuronal trophic factor in the CNS. J. Neurosci. 18, 2808–2821.PubMedGoogle Scholar
  23. 23.
    Zhou X. F. and Rush R. A. (1996) Endogenous brain-derived neurotrophic factor is anterogradely transported in primary sensory neurons. Neuroscience 74, 945–953.Google Scholar
  24. 24.
    Scott B. S. (1977) The effect of elevated potassium on the time course of neuron survival in cultures of dissociated dorsal root ganglia. J. Cell. Physiol. 91, 305–316.PubMedCrossRefGoogle Scholar
  25. 25.
    Eichler M. E., Dubinsky J. M., and Rich K. M. (1992) Relationship of intracellular calcium to dependence on nerve growth factor in dorsal root ganglion neurons in cell culture. J. Neurochem. 58, 263–269.PubMedCrossRefGoogle Scholar
  26. 26.
    Bennett M. R. and White W. (1979) The survival and development of cholinergic neurons in potassium-enriched media. Brain Res. 173, 549–553.PubMedCrossRefGoogle Scholar
  27. 27.
    Collins F., Schmidt M. F., Guthrie P. B., and Kater S. B. (1991) Sustained increase in intracellular calcium promotes neuronal survival. J. Neurosci. 11, 2582–2587.PubMedGoogle Scholar
  28. 28.
    Ling D. S., Petroski R. E., and Geller H. M. (1991) Both survival and development of spontaneously active rat hypothalamic neurons in dissociated culture are dependent on membrane depolarization. Brain Res. Dev. Brain. Res. 59, 99–103.PubMedCrossRefGoogle Scholar
  29. 29.
    Cohen-Cory S., Dreyfus C. F., and Black I. B. (1991) NGF and excitatory neurotransmitters regulate survival and morphogenesis of cultured cerebellar Purkinje cells. J. Neurosci. 11, 462–471.PubMedGoogle Scholar
  30. 30.
    Lipton S. A. (1986) Blockade of electrical activity promotes the death of mammalian retinal ganglion cells in culture. Proc. Natl. Acad. Sci. USA 83, 9774–9778.PubMedCrossRefGoogle Scholar
  31. 31.
    Meyer-Franke A., Kaplan M. R., Pfrieger F. W., and Barres B. A. (1995) Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15, 805–819.PubMedCrossRefGoogle Scholar
  32. 32.
    Xu W., Cormier R., Fu T., Covey D. F., Isenberg K. E., Zorumski C. F., and Mennerick S. J. (2000) Slow death of postnatal hippocampal neurons by GABAA receptor overactivation. J. Neurosci. 20, 3147–3156.PubMedGoogle Scholar
  33. 33.
    Baker R. E., Ruijter J. M., and Bingmann D. (1991) Elevated potassium prevents neuronal death but inhibits network formation in neocortical cultures. Int. J. Dev. Neurosci. 9, 339–345.PubMedCrossRefGoogle Scholar
  34. 34.
    Koike T., Martin D. P., and Johnson E. M., Jr. (1989) Role of Ca2+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: evidence that levels of internal Ca2+ determine nerve growth factor dependence of sympathetic ganglion cells. Proc. Natl. Acad. Sci. USA 86, 6421–6425.PubMedCrossRefGoogle Scholar
  35. 35.
    Collins F. and Lile J. D. (1989) The role of dihydropyridine-sensitive voltage-gated calcium channels in potassium-mediated neuronal survival. Brain Res. 502, 99–108.PubMedCrossRefGoogle Scholar
  36. 36.
    Franklin J. L. and Johnson E. M., Jr. (1992) Suppression of programmed neuronal death by sustained elevation of cytoplasmic calcium. Trends Neurosci. 15, 501–508.PubMedCrossRefGoogle Scholar
  37. 37.
    Lampe P. A., Cornbrooks E. B., Juhasz A., Johnson E. M., Jr., and Franklin J. L. (1995) Suppression of programmed neuronal death by a thapsigargin-induced Ca2+ influx. J. Neurobiol. 26, 205–212.PubMedCrossRefGoogle Scholar
  38. 38.
    Franklin J. L., Sanz-Rodriguez C., Juhasz A., Deckwerth T. L., and Johnson E. M., Jr. (1995) Chronic depolarization prevents programmed death of sympathetic neurons in vitro but does not support growth: requirement for Ca2+ influx but not Trk activation. J. Neurosci. 15, 643–664.PubMedGoogle Scholar
  39. 39.
    Tolkovsky A. M., Walker A. E., Murrell R. D., and Suidan H. S. (1990) Ca2+ transients are not required as signals for long-term neurite outgrowth from cultured sympathetic neurons. J. Cell Biol. 110, 1295–1306.PubMedCrossRefGoogle Scholar
  40. 40.
    Zorumski C. F. and Olney J. W. (1993) Excitotoxic neuronal damage and neuropsychiatric disorders. Pharmacol. Ther. 59, 145–162.PubMedCrossRefGoogle Scholar
  41. 41.
    Choi D. W. (1994) Glutamate receptors and the induction of excitotoxic neuronal death. Prog. Brain Res. 100, 47–51.PubMedGoogle Scholar
  42. 42.
    Ankarcrona M. (1998) Glutamate induced cell death: apoptosis or necrosis? Prog. Brain Res. 116, 265–272.PubMedCrossRefGoogle Scholar
  43. 43.
    Burek M. J. and Oppenheim R. W. (1999) Cellular interactions that regulate programmed cell death in the developing nervous system, in Cell Death and Diseases of the Nervous System (Koliatsos V. E. and Ratan R. R., eds.), Humana Press, Totowa, N. J. pp. 145–179.Google Scholar
  44. 44.
    Koike T. and Tanaka S. (1991) Evidence that nerve growth factor dependence of sympathetic neurons for survival in vitro may be determined by levels of cytoplasmic free Ca2+. Proc. Natl. Acad. Sci. USA 88, 3892–3896.PubMedCrossRefGoogle Scholar
  45. 45.
    Larmet Y., Dolphin A. C., and Davies A. M. (1992) Intracellular calcium regulates the survival of early sensory neurons before they become dependent on neurotrophic factors. Neuron 9, 563–574.PubMedCrossRefGoogle Scholar
  46. 46.
    Tong J. X., Eichler M. E., and Rich K. M. (1996) Intracellular calcium levels influence apoptosis in mature sensory neurons after trophic factor deprivation. Exp. Neurol. 138, 45–52.CrossRefGoogle Scholar
  47. 47.
    Tao X., Finkbeiner S., Arnold D. B., Shaywitz A. J., and Greenberg M. E. (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20, 709–726.PubMedCrossRefGoogle Scholar
  48. 48.
    Bhave S. V., Ghoda L., and Hoffman P. L. (1999) Brain-derived neurotrophic factor mediates the anti-apoptotic effect of NMDA in cerebellar granule neurons: signal transduction cascades and site of ethanol action. J. Neurosci. 19, 3277–3286.PubMedGoogle Scholar
  49. 49.
    Bassan M., Zamostiano R., Davidson A., Pinhasov A., Giladi E., Perl O., et al. (1999) Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J. Neurochem. 72, 1283–1293.PubMedCrossRefGoogle Scholar
  50. 50.
    Gozes I., Davidson A., Gozes Y., Mascolo R., Barth R., Warren D., et al. (1997) Antiserum to activity-dependent neurotrophic factor produces neuronal cell death in CNS cultures: immunological and biological specificity. Brain Res. Dev. Brain Res. 99, 167–175.PubMedCrossRefGoogle Scholar
  51. 51.
    Glazner G. W., Camandola S., and Mattson M. P. (2000) Nuclear factor-kappaB mediates the cell survival-promoting action of activity-dependent neurotrophic factor peptide-9. J. Neurochem. 75, 101–108.PubMedCrossRefGoogle Scholar
  52. 52.
    Sah P., Hestrin S., and Nicoll R. A. (1989) Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons. Science 246, 815–818.PubMedCrossRefGoogle Scholar
  53. 53.
    Zorumski C. F., Mennerick S., and Que J. (1996) Modulation of excitatory synaptic transmission by low concentrations of glutamate in cultured rat hippocampal neurons. J. Physiol. (Lond.) 494, 465–477.Google Scholar
  54. 54.
    Gallo V., Kingsbury A., Balazs R., and Jorgensen O. S. (1987) The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J. Neurosci. 7, 2203–2213.PubMedGoogle Scholar
  55. 55.
    D’Mello S. R., Galli C., Ciotti T., and Calissano P. (1993) Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc. Natl. Acad. Sci. USA 90, 10,989–10,993.CrossRefGoogle Scholar
  56. 56.
    Kubo T., Nonomura T., Enokido Y., and Hatanaka H. (1995) Brain-derived neurotrophic factor (BDNF) can prevent apoptosis of rat cerebellar granule neurons in culture. Brain Res. Dev. Brain Res. 85, 249–258.PubMedCrossRefGoogle Scholar
  57. 57.
    Suzuki K. and Koike T. (1997) Brain-derived neurotrophic factor suppresses programmed death of cerebellar granule cells through a posttranslational mechanism. Mol. Chem. Neuropathol. 30, 101–124.PubMedGoogle Scholar
  58. 58.
    Toescu E. C. (1998) Apoptosis and cell death in neuronal cells: where does Ca2+ fit in? Cell Calcium 24, 387–403.PubMedCrossRefGoogle Scholar
  59. 59.
    Blair L. A., Bence-Hanulec K. K., Mehta S., Franke T., Kaplan D., and Marshall J. (1999) Akt-dependent potentiation of L channels by insulin-like growth factor-1 is required for neuronal survival. J. Neurosci. 19, 1940–1951.PubMedGoogle Scholar
  60. 60.
    Kohara K., Ono T., Tominaga-Yoshino K., Shimonaga T., Kawashima S., and Ogura A. (1998) Activity-dependent survival and enhanced turnover of calcium in cultured rat cerebellar granule neurons. Brain Res. 809, 231–237.PubMedCrossRefGoogle Scholar
  61. 61.
    Ono T., Kudo Y., Kohara K., Kawashima S., and Ogura A. (1997) Activity-dependent survival of rat cerebellar granule neurons is not associated with sustained elevation of intracellular Ca2+. Neurosci. Lett. 228, 123–126.PubMedCrossRefGoogle Scholar
  62. 62.
    Yu S. P., Yeh C. H., Sensi S. L., Gwag B. J., Canzoniero L. M., Farhangrazi Z. S., et al. (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278, 114–117.PubMedCrossRefGoogle Scholar
  63. 63.
    Yu S. P., Yeh C., Strasser U., Tian M., and Choi D. W. (1999) NMDA receptor-mediated K+ efflux and neuronal apoptosis. Science 284, 336–339.PubMedCrossRefGoogle Scholar
  64. 64.
    Nijhawan D., Honarpour N., and Wang X. (2000) Apoptosis in neural development and disease. Ann. Rev. Neurosci. 23, 73–87.PubMedCrossRefGoogle Scholar
  65. 65.
    Kuan C. Y., Roth K. A., Flavell R. A., and Rakic P. (2000) Mechanisms of programmed cell death in the developing brain. Trends Neurosci. 23, 291–297.PubMedCrossRefGoogle Scholar
  66. 66.
    Wilson M. R. (1998) Apoptosis: unmasking the executioner. Cell Death Differ. 5, 646–652.PubMedCrossRefGoogle Scholar
  67. 67.
    Thornberry N. A. and Lazebnik Y. (1998) Caspases: enemies within. Science 281, 1312–1316.PubMedCrossRefGoogle Scholar
  68. 68.
    Nicholson D. W. (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Diff. 6, 1028–1042.CrossRefGoogle Scholar
  69. 69.
    Sadoul R. (1998) Bcl-2 family members in the development and degenerative pathologies of the nervous system. Cell Death Diff. 5, 805–815.CrossRefGoogle Scholar
  70. 70.
    Datta S. R., Brunet A., and Greenberg M. E. (1999) Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927.PubMedCrossRefGoogle Scholar
  71. 71.
    Datta S. R., Dudek H., Tao X., Masters S., Fu H., Gotoh Y., and Greenberg M. E. (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241.PubMedCrossRefGoogle Scholar
  72. 72.
    Crowder R. J. and Freeman R. S. (1998) Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. J. Neurosci. 18, 2933–2943.PubMedGoogle Scholar
  73. 73.
    Hetman M., Kanning K., Cavanaugh J. E., and Xia Z. (1999) Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J. Biol. Chem. 274, 22,569–22,580.CrossRefGoogle Scholar
  74. 74.
    Ikegami K. and Koike T. (2000) Membrane depolarization-mediated survival of sympathetic neurons occurs through both phosphatidylinositol 3-kinase- and CaM kinase II-dependent pathways. Brain Res. 866, 218–226.PubMedCrossRefGoogle Scholar
  75. 75.
    Miller T. M., Tansey M. G., Johnson E. M., Jr., and Creedon D. J. (1997) Inhibition of phosphatidylinositol 3-kinase activity blocks depolarization-and insulin-like growth factor I-mediated survival of cerebellar granule cells. J. Biol. Chem. 272, 9847–9853.PubMedCrossRefGoogle Scholar
  76. 76.
    Yano, S., Tokumitsu H., and Soderling T. R. (1998) Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature 396, 584–587.PubMedCrossRefGoogle Scholar
  77. 77.
    Dudek H., Datta S. R., Franke T. F., Birnbaum M. J., Yao R., Cooper G. M., et al. (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661–665.PubMedCrossRefGoogle Scholar
  78. 78.
    D’Mello S. R., Borodezt K., and Soltoff S. P. (1997) Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: possible involvement of PI 3-kinase in IGF-1 signaling. J. Neurosci. 17, 1548–1560.PubMedGoogle Scholar
  79. 79.
    Bence-Hanulec K. K., Marshall J., and Blair L. A. (2000) Potentiation of neuronal L calcium channels by IGF-1 requires phosphorylation of the α1 subunit on a specific tyrosine residue. Neuron 27, 121–131.PubMedCrossRefGoogle Scholar
  80. 80.
    Mao Z., Bonni A., Xia F., Nadal-Vicens M., and Greenberg M. E. (1999) Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, 785–790.PubMedCrossRefGoogle Scholar
  81. 81.
    McConkey D. J. and Orrenius S. (1996) The role of calcium in the regulation of apoptosis. J. Leukoc. Biol. 59, 775–783.Google Scholar
  82. 82.
    Wang H. G., Pathan, N., Ethell I. M., Krajewski S., Yamaguchi Y., Shibasaki F., et al. (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284, 339–343.PubMedCrossRefGoogle Scholar
  83. 83.
    Choi D. W. (1996) Ischemia-induced neuronal apoptosis. Curr. Opin. Neurobiol. 6, 667–672.CrossRefGoogle Scholar
  84. 84.
    Dobbing J. and Sands J. (1979) Comparative aspects of the brain growth spurt. Early Hum. Dev. 3, 79–83.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  1. 1.Department of Psychiatry, and Department of Anatomy and NeurobiologyWashington University School of MedicineSt. Louis

Personalised recommendations