Molecular Biotechnology

, Volume 34, Issue 3, pp 355–381 | Cite as

Living with heterogeneities in bioreactors

Understanding the effects of environmental gradients on cells
  • Alvaro R. Lara
  • Enrique Galindo
  • Octavio T. Ramírez
  • Laura A. PalomaresEmail author


The presence of spatial gradients in fundamental culture parameters, such as dissolved gases, pH, concentration of substrates, and shear rate, among others, is an important problem that frequently occurs in large-scale bioreactors. This problem is caused by a deficient mixing that results from limitations inherent to traditional scale-up methods and practical constraints during large-scale bioreactor design and operation. When cultured in a heterogeneous environment, cells are continuously exposed to fluctuating conditions as they travel through the various zones of a bioreactor. Such fluctuations can affect cell metabolism, yields, and quality of the products of interest. In this review, the theoretical analyses that predict the existence of environmental gradients in bioreactors and their experimental confirmation are reviewed. The origins of gradients in common culture parameters and their effects on various organisms of biotechnological importance are discussed. In particular, studies based on the scale-down methodology, a convenient tool for assessing the effect of environmental heterogene ities, are surveyed.

Index Entries

Scale up scale down gradients bioreactors transient 



Dissolved oxygen concentration at saturation with air


Computational fluid dynamics


Chinese hamster ovary


Dissolved carbon dioxide


Dissolved hydrogen


Impeller diameter


Dissolved oxygen concentration


Dry weight


Green fluorescent protein


Human growth hormone


Volumetric oxygen transfer coefficient


Impeller rotation speed


Plug-flow reactor


Power input


Pump rate




Scale-down system


Stirred-tank reactor


Circulation time


Tricarboxylic acid


Mixing time


Characteristic time for mass transfer


Characteristic time for oxygen uptake







Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oldshue, J. Y. (1966). Fermentation mixing scale-up technique. Biotechnol. Bioeng. 8, 3–24.Google Scholar
  2. 2.
    Palomares, L. A. and Ramírez, O. T. (2000) Bioreactor Scale-Down, in The Encyclopedia of Cell Technology, vol. 1 (Spier, R. E., ed.), John Wiley and Sons, New York, NY, pp. 174–183.Google Scholar
  3. 3.
    Bylund, F., Collet, E., Enfors, S. O., and Larsson, G. (1998) Substrate gradient formation in the large-scale bioreactor lowers cell yield and increases by-product formation. Bioprocess Eng. 18, 171–180.Google Scholar
  4. 4.
    Guillard, F. and Trägardh, C. (1999) Modeling of the performance of industrial bioreactors with a dynamic microenvironmental approach: A critical review. Chem. Eng. Technol. 22, 187–195.Google Scholar
  5. 5.
    Palomares, L. A. and Ramírez, O. T. (2000) Bioreactor Scale-Up, in The Encyclopedia of Cell Technology, vol. 1 (Spier, R. E., ed.), John Wiley and Sons, New York, NY, pp. 183–201.Google Scholar
  6. 6.
    Vlaev, D., Mann, R., Lossev, V., Vlaev, S. D., Zahradnik, J., and Seichter, P. (2000) Macro mixing and Streptomyces fradiae. Modelling oxygen and nutrient segregation in an industrial bioreactor. Trans IChemE part A 78, 354–362.Google Scholar
  7. 7.
    Enfors, S.-O., Jahic, M., Rozkov, A., et al. (2001) Physiological responses to mixing in large scale bioreactors. J. Biotechnol. 82, 175–185.Google Scholar
  8. 8.
    Hristov, H., Mann, R., Lossev, V., Vlaev, S. D., and Seichter, P. (2001) A 3-D analysis of gas-liquid mixing, mass transfer and bioreaction in a stirred bioreactor. Trans IChem E part C 79, 232–241.Google Scholar
  9. 9.
    Amanullah, A., Buckland, B. C., and Nienow, A. W. (2004) Mixing in the fermentation and cell culture industries, in Handbook of Industrial Mixing: Science and Practice (Paul, E. L., Atiemo-Obeng, V. A., and Kresta, S. M., eds.), John Wiley & Sons, Hoboken, NJ, pp. 1071–1170.Google Scholar
  10. 10.
    Doran, P. M. (1993). Design of bioreactors for plant cells and organs, in Advances in Biochemical Engineering/Biotechnology, vol. 48 (Fietcher, A., ed.), Springer-Verlag, Berlin: pp. 115–168.Google Scholar
  11. 11.
    Marten, M. R., Wenger, K. R., and Khan, S. A. (1997) Rheology, mixing time and regime analysis for a production-scale Aspergillus oryzae fermentation. Proceedings of the 4th International Conference in Bioreactor & Bioprocess Fluid Dynamics”, (Nienow, A. W., ed.), Mechanical Engineering Publications, BurySt. Edmonds, UK, pp. 295–313.Google Scholar
  12. 12.
    Larsson, G., Törnkvist, M., Stahl-Wernersson, E., Trägardh, C., Noorman, H., and Enfors, S. O. (1996) Substrate gradients in fed-batch bioreactors: origin and consequences. Bioprocess Eng. 14, 281–289.Google Scholar
  13. 13.
    Larsson, G. and Törnkvist, M. (1996) Rapid sampling, cell inactivation and evaluation of low extracellular glucose concentrations during fed-batch cultivation. J. Biotechnol. 49, 69–82.PubMedGoogle Scholar
  14. 14.
    Bylund, F., Guillard, F., Enfors, S., Trägardh, C., and Larsson, G. (1999). Scale down of recombinant protein production: a comparative study of scaling performance. Bioprocess Eng. 20, 377–389.Google Scholar
  15. 15.
    Bylund, F., Castan, A., Mikkola, R., Veide, A., and Larsson, G. (2000). Influence of scale-up on the quality of recombinant human growth hormone. Biotechnol. Bioeng. 69, 119–128.PubMedGoogle Scholar
  16. 16.
    Sinacore, M. S., Charlebois, T. S., Drapeu, D., Leonard, M., Harrison, S., and Adamson, S. R. (2000) Cell stability, in The Encyclopedia of Cell Technology, vol. 1, (Spier, R. E., ed.), John Wiley and Sons, New York, NY, pp. 458–472.Google Scholar
  17. 17.
    Choi, J. H., Keum, K. C., and Lee, S. Y. (2006) Production of recombinant proteins by high cell-density cultures of Escherichia coli. Chem. Eng. Sci. 61, 876–885.Google Scholar
  18. 18.
    Ozturk, S. S. (1996) Engineering challenges in high cell density cell culture systems. Cytotechnol. 22, 3–16.Google Scholar
  19. 18a.
    Reuss, M., Schmalzriedt, S., and Jenne, M. (1994) Structured Modelling of Bioreactors, in Advances in Bioprocess Engineering (Galindo E. and Ramírez, O. T., eds.), Kluwer Academic Press, Dordrecht, The Netherlands, pp. 207–215.Google Scholar
  20. 19.
    Langheinrich, C., Nienow, A. W., Stevenson, N. C., Enery, A. N., Clayton, T. M., and Slater, N. K. H. (1995) Mixing and oxygen transfer in a large scale animal cell bioreactor, in Biochemical Engineering 3 (Schmid, R. D., ed.) Universität Stuttgart, Stuttgart, pp. 162–164.Google Scholar
  21. 20.
    Oosterhuis, N. M. G. and Kossen, N. W. F. (1984) Dissolved oxygen concentration profiles in a productionscale bioreactor. Biotechnol. Bioeng. 26, 546–550.PubMedGoogle Scholar
  22. 21.
    Borys, M. C., Linzer, D. I. H., and Papoutsakis, E. T. (1993) Culture pH affects expression rates and glycosylation of recombinant mouse placental lactogen proteins by chinese hamster ovary (CHO) cells. Bio/Technology 11, 720–724.PubMedGoogle Scholar
  23. 22.
    Häggstrom, L. (2000) Cell Metabolism, Animal, in The Encyclopedia of Cell Technology, vol. 1 (Spier, R. E., ed.), John Wiley and Sons, New York, NY, pp. 392–411.Google Scholar
  24. 23.
    Langheinrich, C. and Nienow, A. W. (1999) Control of pH in large-scale, free suspension animal cell bioreactors: alkali addition and pH excursions. Biotechnol. Bioeng. 66, 171–179.PubMedGoogle Scholar
  25. 24.
    McDowell, C. Papoutsakis, E. T., and Borys, M. C. (2000) Animal cell Culture, Physiochemical effects of pH, in The Encyclopedia of Cell Technology, vol. 1 (Spier, R. E., ed.), John Wiley and Sons, New York, NY, pp. 63–70.Google Scholar
  26. 25.
    Amanullah, A., McFarlane, C. M., Emery, A. N., and Nienow, A. W. (2001) Seale-down model to simulate spatial pH variations in large-scale bioreactors. Biotechnol. Bioeng. 73, 390–399.PubMedGoogle Scholar
  27. 26.
    Onyeaka, H., Nienow, A. N., and Hewitt, C. J. (2003) Further studies related to the scale-up of high cell density Escherichia coli fed-batch fermentation: the additional effect of a changing microenvironment when using aqueous ammonia to control pH. Biotechnol. Bioeng. 84, 474–484.PubMedGoogle Scholar
  28. 27.
    Zheng, J. Y. and Janis, L. J. (2006) Influence of pH, buffer species, and storage temperature on physicochemical stability of a humanized monoclonal antibody LA298. Int. J. Pharmaceutics 308, 46–51.Google Scholar
  29. 28.
    Gray, D. R., Chen, S., Howarth, W., Inlow, D., and Maiorella, B. L. (1996) CO2 in large-scale and high-density CHO cell perfusion culture. Cytotechnol. 22, 65–78.Google Scholar
  30. 29.
    Nienow A. W., Langheinrich, C., Stevenson, N. C., Emery, A. N., Clayton, T. M., and Slater, N. K. H. (1996) Homogenisation and oxygen transfer rates in large agitated and sparged animal cell bioreactors: Some implications for growth and production. Cytotechnol. 22, 87–94.Google Scholar
  31. 30.
    Mostafa, S. S. and Gu, X. S. (2003). Strategies for improved dCO2 removal in large-scale fed-batch cultures. Biotechnol Prog. 19, 45–51.PubMedGoogle Scholar
  32. 31.
    Bothun, G. D., Knutson, B. L., Berberich, J. A., Strobel, H. J., and Nokes, S. E. (2004) Metabolic selectivity and growth of Clostridium thermocellum in continuous culture under elevated hydrostatic pressure. Appl. Microbiol. Biotechnol. 65, 149–157.PubMedGoogle Scholar
  33. 32.
    Lamed, R. J., Lobos, J. H., and Su, T. M. (1988) Effects of stirring and hydrogen on fermentation products of Clostridium thermocellum. Appl. Environ. Microbiol. 54, 1216–1221.PubMedGoogle Scholar
  34. 33.
    Zanghi, J. A., Schmelzer, A. E., Mendoza, T. P., Knop, R. H., and Miller, W. M. (1999). Bicarbonate concentration and osmolarity are key determinants in the inhibition of CHO polysialylation under elevated pCO2 or pH. Biotechnol. Bioeng. 65, 182–191.PubMedGoogle Scholar
  35. 34.
    Castan, A., Näsman, A., and Enfors, S. O. (2002) Oxygen enriched air supply in Escherichia coli processes: production of biomass and recombinant human growth hormone. Enzyme Microb. Technol. 30, 847–854.Google Scholar
  36. 35.
    Mashego, M. R. (2005) Robust experimental methods to study in-vivo pre-steady state kinetics of primary metabolism in Saccharomyces cerevisiae. PhD Thesis. Delft University of Technology.Google Scholar
  37. 36.
    Mitchell-Logean, C. and Murhammer, D. W. (1997) Bioreactor headspace purging reduces dissolved carbon dioxide accumulation in insect cell cultures and enhances cell growth. Biotechnol. Prog. 13, 875–877.Google Scholar
  38. 37.
    Garnier, A., Voyer, R., Tom, R., Perret, S., Jardin, B., and Kamen, A. (1996) Dissolved carbon dioxide accumulation in a large scale and high density production of TGF β receptor with baculovirus infected Sf-9 cells. Cytotechnol. 22, 53–63.Google Scholar
  39. 38.
    Contreras, A., García, F., Molina, E., and Merchuk, J. C. (1998) Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth pf Phaedactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol. Bioeng. 60, 317–325.PubMedGoogle Scholar
  40. 39.
    Johnston, J. S., Jensen, A., Czeschin, D. G., and Price, H. J. (1996) Environmentally induced nuclear 2C DNA content instability in Helianthus annuus (Asteraceae). Am. J. Bot. 83, 1113–1120.Google Scholar
  41. 40.
    Weber, W., Rimann, M., de Glutz, F.-N., Weber, E., Memmert, K., and Fussenegger, M. (2005) Gas-inducible product gene expression in bioreactors. Metabolic Eng. 7, 174–181.Google Scholar
  42. 41.
    Weber, W., Spielmann, M., Daoud El-Baba, M., Keller, B., Aubel, D., and Fussenegger, M. (2005) Tobacco smoke as inducer for gas phase-controlled transgene expression in mammalian cells and mice. Biotechnol. Bioeng. 90, 893–897.PubMedGoogle Scholar
  43. 42.
    Mollet, M., Ma, N., Zhao, Y., Brodkey, R., Taticek, R., and Chalmers, J. J. (2004) Bioprocess equipment: Characterization of energy dissipation rate and its potential to damage cells. Biotechnol. Prog. 20, 1437–1448.PubMedGoogle Scholar
  44. 43.
    Garcia-Briones, M. A. and Chalmers, J. J. (1994) Flow parameters associated with hydrodynamic cell injury. Biotechnol. Bioeng. 44, 1089–1098.PubMedGoogle Scholar
  45. 44.
    Taticek, R. A., Moo-Young, M., and Legge, R. L. (1991) The scale-up of plant cell culture: Engineering considerations. Plant Cell Tissue and Organ Culture 24, 139–158.Google Scholar
  46. 45.
    Toma, M. K., Ruklisha, M. P., Vanags, J. J., et al. (1991) Inhibition of microbial growth and metabolism by excess turbulence. Biotechnol. Bioeng. 38, 552–556.PubMedGoogle Scholar
  47. 46.
    Cruz, P. E., Cuhna, A., Peixoto, C. C., Clemente, J., Moreira, J. L., and Carrondo, M. T. J. (1998) Optimization of the production of virus-like particles in insect cells. Biotechnol. Bioeng. 60, 408–418.PubMedGoogle Scholar
  48. 47.
    Thomas, C. R. and Zhang, Z. (1998) The effect of hydrodynamics on biological materials, in Advances in Bioprocess Engineering II (Galindo E. and Ramírez, O. T., eds.), Kluwer Academic Publishers, Dordretch, pp. 137–170.Google Scholar
  49. 48.
    Chisti, Y. (2001) Hydrodynamic damage to animal cells. Crit. Rev. Biotechnol. 21, 67–110.PubMedGoogle Scholar
  50. 49.
    Palomares, L. A., Estrada-Mondaca, S., and Ramírez, O. T. (2006) Principles and Applications of the Insect-Cell-Baculovirus Expression Vector System, in Cell Culture-Technology for Pharmaceutical and Cellular Applications (Ozturk, S. and Hu, W. S., eds.), Taylor and Francis, New York, pp. 627–692.Google Scholar
  51. 50.
    Sahoo, S., Rao, K., and Suraishkumar, G. K. (2006) Reactive oxygen species induced by shear stress mediate cell death in Bacillus subtillis. Biotechnol. Bioeng. 94, 118–127.PubMedGoogle Scholar
  52. 51.
    Lu, G. Z., Thompson, B. G., Suresh, M. R., and Gray, M. R. (1995) Cultivation of hybridoma cells in an inclined bioreactor. Biotechnol. Bioeng. 45, 176–186.PubMedGoogle Scholar
  53. 52.
    McDowell, C. L. and Papoutsakis, E. T. (1998) Increased agitation intensity increases CD13 receptor surface content and mRNA levels, and alters the metabolism of HL60 cells cultures in stirred tank reactors. Biotechnol. Bioeng. 60, 239–250.PubMedGoogle Scholar
  54. 53.
    Senger, R. S. and Karim, M. N. (2003) Effect of shear stress in intrinsic CHO culture state and glycosylation of recombinant tissue-type plasminogen activator protein. Biotechnol. Prog. 19, 1199–1209.PubMedGoogle Scholar
  55. 54.
    Ranjan, V., Waterbury, R., Xiao, Z., and Diamond, S. L. (1996) Fluid shear stress induction of the transcriptional activator c-fos in human and bovine endothelial cells, HeLa, and Chinese hamster ovary cells. Biotechnol. Bioeng. 49, 383–390.PubMedGoogle Scholar
  56. 55.
    Lakhotia, S., Bauer, K. D., and Papoutsakis, E. T. (1992) Damaging agitation intensities increase DNA synthesis rate and alter cell-cycle phase distributions of CHO cells. Biotechnol. Bioeng. 40, 978–990.PubMedGoogle Scholar
  57. 56.
    Gao, Q., Fang, A., Oierson, D. L., Mishra, S. K., and Demain, A. L. (2001) Shear stress enhances microcin B17 production in a rotating wall bioreactor, but ethanol stress does not. Appl. Microbiol. Biotechnol. 56, 384–387.PubMedGoogle Scholar
  58. 57.
    Abu-Reesh, I. and Kargi, F. (1989) Biological responses of hybridoma cells to defined hydrodynamic shear stress. J. Biotechnol. 9, 167–178.Google Scholar
  59. 58.
    Goldblum, S., Bae, Y.-K., Hink, W. F., and Chalmers, J. (1990) Protective effect of methylcellulose and other polymers on insect cells subjected to laminar shear stress. Biotechnol. Prog. 6, 383–390.PubMedGoogle Scholar
  60. 59.
    Michaels, J. D., Petersen, J. F., McIntire, L. V., and Papoutsakis, E. T. (1991) Protection mechanisms of freely suspended animal cells (CRL 8018) from fluidmechanical injury. Viscometric and bioreactor studies using serum, Pluronic F68 and polyethylene glycol. Biotechnol. Bioeng. 38, 169–180.PubMedGoogle Scholar
  61. 60.
    Palomares, L. A., González, M., and Ramírez O. T. (2000) Evidence of Pluronic F-68 direct interaction with insect cells: Impact on shear protection, recom binant protein and baculovirus production, Enzyme Microb. Technol. 26, 324–331.PubMedGoogle Scholar
  62. 61.
    Ramírez, O. T. and Mutharasan, R. (1990) The role of plasma membrane fluidity on the shear sensitivity of hybridomas grown under hydrodynamic stress. Biotechnol. Bioeng. 36, 911–920.PubMedGoogle Scholar
  63. 62.
    Al-Rubeai, M., Singh, R. P., Goldman, M. H., and Emery, A. N. (1995) Death mechanisms of animal cells in conditions of intensive agitation. Biotechnol. Bioeng. 45, 463–472.PubMedGoogle Scholar
  64. 63.
    Wase, D. A., and Ratwatte, H. A. M. (1985) Variation of intracellular sodium and potassium concentration with changes in agitation rate for chemostat-cultivated Escherichia coli. Appl. Microbiol. Biotechnol. 22, 325–328.Google Scholar
  65. 64.
    Rocha-Valadez, J. A., Hassan, M., Corkidi, G., Flores, C., Galindo, E., Serrano-Carreón, L. (2005) 6-Pentyl-α pyrone production by Trichoderma harzianum: The influence of energy dissipation rate and its implications of fungal physiology. Biotechnol. Bioeng. 91, 54–61.PubMedGoogle Scholar
  66. 65.
    Manfredini, R., Cavallera, V., Marini, L., and Donati, G. (1983) Mixing and oxygen transfer in conventional strirrer fermentors. Biotechnol. Bioeng. 25, 3115–3131.PubMedGoogle Scholar
  67. 66.
    Gorenflo, V. M., Beauchesne, P., Tayi, V., et al. Acoustic cell processing for viral transduction or bioreactor cell retention. Proceedings of the 19th ESACT meeting. In press.Google Scholar
  68. 67.
    Tsao, E. I., Bohn, M. A., Naumsuwan, V., Ostead, D. R., and Munster, M. J. (1992) Effects of heat shock on the production of human erythropoietin from recombinant CHO cells. Biotechnol. Bioeng. 40, 1190–1196.PubMedGoogle Scholar
  69. 68.
    Yamamori, T. and Yura, T. (1980) Temperature-induced synthesis of specific proteins in Escherichia coli: Evidence for trancriptional control. J. Bacteriol. 142, 843–851.PubMedGoogle Scholar
  70. 69.
    Oosterhuis, N. M. G. (1984) Scale-up of bioreactors: a scale-down approach. PhD thesis, Delft University of Technology, Delft, The Netherlands.Google Scholar
  71. 70.
    De León, A., Galindo, E., and Ramírez, O. T. (1995) Effect of oscillating dissolved oxygen tension on penicillin acylase production by a recombinant E coli, in Biochemical Engineering 3 (Schmid, R. D., ed.), Universität Stuttgart, Stuttgart, pp. 200–202.Google Scholar
  72. 71.
    Serrato, J. A., Palomares, L. A., Meneses-Acosta, A., and Ramírez, O. T. (2004) Heterogeneous conditions in dissolved oxygen affect N-glycosylation but not productivity of a monoclonal antibody in hybridoma cultures. Biotechnol. Bioeng. 88, 176–188.PubMedGoogle Scholar
  73. 72.
    Sandoval-Basurto, E., Gosset, G., Bol'var, F., and Ramírez, O. T. (2005) Culture of Escherichia coli under dissolved oxygen gradients simulated in a two-compartments scale-down system: metabolic response and production of recombinant protein. Biotechnol. Bioeng. 89, 453–463.PubMedGoogle Scholar
  74. 73.
    Lara, A. R., Leal, L. I., Flores, N., Gosset, G., Bolívar, F., and Ramírez, O. T. (2006) Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system. Biotechnol Bioeng. 93, 372–385.PubMedGoogle Scholar
  75. 74.
    Serrato, J. A., Hernández, V., and Ramírez, O. T. (2006) Heterogeneous conditions in pH and dissolved CO2 concentration on hybridoma cultures: Implications on growth and monoclonal antibody glycosylation. Presented at the Cell Culture Engineering X meeting. Whitsler, BC, Canada.Google Scholar
  76. 75.
    Schilling, B. M., Pfefferle, W., Bachmann, B., Leuchtenberger, W., and Deckwer, W. (1999) A special reactor design for investigations of mixing time in a scaled-down industrial L-lysine fed-batch fermentation process. Biotechnol. Bioeng. 64, 599–606.PubMedGoogle Scholar
  77. 76.
    Papagianni, M., Mattey, M., and Kristiansen, B. (2003) Design of a tubular loop bioreactor for scale-up and scale-down of fermentation processes. Biotechnol. Prog. 19, 1498–1504.PubMedGoogle Scholar
  78. 77.
    Oosterhuis, N. M. G., Kossen, N. W. F., Olivier, A. P. C., and Schenk, E. S. (1985) Scale-down and optimization studies of the gluconic acid fermentation by Gluconobacter oxydans. Biotechnol. Bioeng. 27, 711–720.PubMedGoogle Scholar
  79. 78.
    Namdev, P. K., Yegneswaran, P. K., Thompson, B. G., and Gray, M. R. (1991) Experimental simulation of large-scale bioreactor environments using a Monte Carlo method. Can. J. Chem. Eng. 69, 513–519.CrossRefGoogle Scholar
  80. 79.
    Schweder, T., Krüger, E., Xu, B., Jürgen, B., Blomsten, G., Enfors, S., and Hecker, M. (1999) Monitoring genes that respond to process-related stress in largescale bioprocesses. Biotechnol. Bioeng. 65, 151–159.PubMedGoogle Scholar
  81. 80.
    Cronan, J. E. and Laporte, D. (1996) Tricarboxylic acid cycle and glyoxylate bypass, in Escherichia coli and Salmonella. Cellular and Molecular Biology, (Neidhardt F. C., et al., eds.), ASM Press, Washington, DC, pp. 206–216.Google Scholar
  82. 81.
    Konz, J. O., King, J., and Cooney, C. L. (1998) Effects of oxygen on recombinant protein expression. Biotechnol. Prog. 14, 393–409.PubMedGoogle Scholar
  83. 82.
    Poole, R. K. and Ingledwe, W. J. (1987) Patways of electron to oxygen, in Escherichia coli and Salmonella typhiparium: Cellular and Molecular Biology (Neidhardt F. C., et al., eds.), ASM Press, Washington, DC, pp. 170–200.Google Scholar
  84. 83.
    Gennis, R. B. and Stewart, V. (1996) Respiration, in Escherichia coli and Salmonella. Cellular and Molecular Biology, (Neidhardt, F. C., et al., eds.), ASM Press, Washington, DC, pp. 217–261.Google Scholar
  85. 84.
    O'Beirne, D., and Hamer, G. (2000) Oxygen availability and growth of Escherichia coli W3110: A problem exacerbated by scale-up. Bioprocess Eng. 23, 487–494.Google Scholar
  86. 85.
    Cashel, M., Gentry, D. R., Hernandez, V. J., and Vinella, D. (1996) The stringent response. In Escherichia coli and Salmonella. Cellular and Molecular Biology, (Neidhardt, F. C., et al., eds.), ASM Press, Washington, DC, pp. 1458–1496.Google Scholar
  87. 86.
    Neubauer, P., Ahman, M., Törkvist, M., Larsson, G., and Enfors, S.O. (1995) Response of guanosine tetraphosphate to glucose fluctuations in fed-batch cultivations of Escherichia coli. J. Biotechnol. 43, 195–204.PubMedGoogle Scholar
  88. 87.
    Xu, B., Jahic, M., Blomsten, G., and Enfors, S. (1999) Glucose overflow metabolism and mixed-acid fermentation in aerobic large-scale fed-batch processes with Escherichia coli. Appl. Microbiol. Biotechnol. 51, 564–571.PubMedGoogle Scholar
  89. 88.
    Lin, H. Y. and Neubauer, P. (2000) Influence of controlled glucose oscillations on a fed-batch process of recombinant Escherichia coli. J. Biotechnol. 79, 27–37.PubMedGoogle Scholar
  90. 89.
    Hewitt, C., Caron, G., Axelsson, B., McFarlane, C., and Nienow, A. (2000) Studies related to the scale-up of high-cell-density E. coli fed-batch fermentations using multiparameter flow cytometry: effect of a changing microenvironment with respect to glucose and dissolved oxygen concentration. Biotechnol. Bioeng. 70, 381–39.PubMedGoogle Scholar
  91. 90.
    Hopkins, D. J., Betenbaugh, M. J., and Dhurjati, P. (1987) Effects of dissolved oxygen tension on the stability of recombinant Escherichia coli containing plasmid pKN401. Biotechnol. Bioeng. 29, 85–91.PubMedGoogle Scholar
  92. 91.
    Oosterhuis, N. M. G., Groesbeek, N. M., Olivier, A. P. C., and Kossen, N. W. F. (1983) Scale-down aspects of the gluconic acid fermentation. Biotechnol. Lett. 5, 141–146.Google Scholar
  93. 92.
    Buse, R., Qazi, G. N., and Onken, U. (1992) Influence of constant and oscillating dissolved oxygen concentrations on keto acid production by Gluconobacter oxydans subsps. melanogenum. J. Biotechnol. 26, 231–244.PubMedGoogle Scholar
  94. 93.
    Moes, J., Griot, M., Heinzle, E., Dunn, I. J., and Bourne, J. R. (1985) A microbial culture with oxygen-sensitive product distribution as a potential tool for characterizing bioreactor oxygen transport. Biotechnol. Bioeng. 27, 482–489.PubMedGoogle Scholar
  95. 94.
    Griot, N., Sanee, U., Heinzle, E., Dunn, I. J., and Bourne, J. R. (1988) Fermenter scale-up using an oxygen sensitive culture. Chem. Eng. Sci. 43, 1903–1908.Google Scholar
  96. 95.
    Griot, M., Moes, J., Heinzle, E., Dunn, I. J., and Bourne, J. R. (1986) A microbial culture for the measurement of macro and micromixing phenomena in biological reactors, in Proc. Int. Conf. on Bioreactor Fluid Dynamics. (Stanbury, J., ed.) Cambridge, England, pp. 203–216.Google Scholar
  97. 96.
    Amanullah, A., Nienow, A. W., Emery, A. N., and McFarlane, C. M. (1993) The use of Bacillus subtilis as an oxygen sensitive culture to simulate dissolved oxygen cycling in large scale fermenters. Trans. Inst. Chem. Eng. Part C. 71, 206–208.Google Scholar
  98. 97.
    Suphantharika, M., Ison, A. P., and Lilly, M. D. (1995) The effect of cycling dissolved oxygen tension on the synthesis of the antibiotic difficidin by Bacillus subtillis. Bioprocess. Eng. 12, 181–186.Google Scholar
  99. 98.
    Galindo, E. (1994) Aspects of the process for xanthan production. Trans. Inst. Chem. Eng. C. 72, 227–237.Google Scholar
  100. 99.
    Serrano-Carreón, Corona, R. M., Sánchez, A., and Galindo, E. (1998) Prediction of xanthan fermentation development by a model linking kinetics, power drawn and mixing, Process Biochem. 33, 133–146.Google Scholar
  101. 100.
    Amanullah, A., Tuttiet, B., and Nienow, A. W. (1998) Agitator speed and dissolved oxygen effects in xanthan fermentations. Biotechnol. Bioeng. 57, 198–210.PubMedGoogle Scholar
  102. 101.
    Trujillo-Roldán, M. A., Peña, C., Ramírez, O.T., and Galindo, E. (2001) Effect of oscillating dissolved oxygen tension on the production of alginate by Azotobacter vinelandii. Biotechnol. Prog. 17, 1042–1048.PubMedGoogle Scholar
  103. 102.
    Trujillo-Roldán, M. A., Moreno, S., Espín, G., and Galindo, E. (2004) Roles of the polymerase complex and alginate-lyase in determining the molecular weight of alginate produced by Azotobacter vinelandii, Appl. Microbiol. Biotechnol. 63, 742–747.PubMedGoogle Scholar
  104. 103.
    Wills, C. (1990) Regulation of sugar and ethanol metabolism in Saccharomyces cerevisiae. Crit. Rev. Biochem. Mol. Biol. 25, 245–280.PubMedGoogle Scholar
  105. 104.
    Kappeli, O., Gschwend-Petrik, M., and Fiechter, A. (1985) Transient responses of Saccharomyces uvarum to a change of the growth-limiting nutrient in continuous culture. J. Gen. Microbiol. 131, 47–52.Google Scholar
  106. 105.
    Cortés, G., Trujillo-Roldán, M. A., Ramírez, O. T., and Galindo, E. (2005) Production of β-galactosidase by Kluyveromyces marxianus under oscillating dissolved oxygen tension. Process Biochem. 40, 773–778.Google Scholar
  107. 106.
    Kacmar, J., Zamamiri, A., Carlson, R., Abu-Absi, N. R., and Srienc, F. (2004) Single-cell variability in growing Saccharomyces cerevisiae cell populations measured with automated flow cytometry. J. Biotechnol. 109, 239–254.PubMedGoogle Scholar
  108. 107.
    Einsele, A. (1978) Scaling up bioreactors. Process Biochem. 7, 13–14.Google Scholar
  109. 108.
    Vardar, F., and Lilly, M. D. (1982) Effect of cycling oxygen concentrations on product formation in penicillin fermentations. Eur. J. Appl. Microbiol. Biotechnol. 14, 203–211.Google Scholar
  110. 109.
    Larsson, G. and Enfors, S.-O. (1988) Studies of insufficient mixing in bioreactors: effect of limiting oxygen concentrations and short term oxygen starvation on Penicillium chrysogenum. Bioproc. Eng. 3, 123–127.Google Scholar
  111. 110.
    Yegneswaran, P. K., Gray, M. R., and Thompson, B. G. (1991) Experimental simulation of dissolved oxygen fluctuations in large fermentors: effect on Streptomyces clavuligerus. Biotechnol. Bioeng. 38, 1203–1209.PubMedGoogle Scholar
  112. 111.
    Bhargava, S., Wenger, K. S., Rane, K., Rising, V., and Marten, M. R. (2005) Effect of cycle time on fungal morphology, broth rheology, and recombinant enzyme productivity during pulsed addition of limiting carbon source. Biotechnol. Bioeng 89, 524–529.PubMedGoogle Scholar
  113. 112.
    Langheinrich, C., Nienow, A. W., Eddleston, T., Stevenson, N. C., Emery, A. N., Clayton, T. M., and Slater, N. K. H. (1998) Liquid homogenization studies in animal cell bioreactors of up to 8 m3 in volume. Trans IChemE 76, 107–116.Google Scholar
  114. 113.
    Varley, J., and Birch, J. (1999) Reactor design for large-scale suspension animal cell culture. Cytotechnol. 29, 177–205.Google Scholar
  115. 114.
    Bödeker, B. G. D., Newcomb, R., Yuan, P., Braufman, A., Kelsey, W. (1994) Production of recombinant factor VIII from perfusion cultures: I. Large-scale fermentation, in Animal Cell Technology: Products of today, prospects of tomorrow (Spier, R. E., Griffiths, J. B., and Berthold, W., eds.), Butterworth-Heinemann, Oxford, pp. 580–583.Google Scholar
  116. 115.
    Palomares, L. A., Estrada-Mondaca, S., and Ramírez, O. T. (2004) Production of recombinant proteins: Challenges and solutions, in Methods in Molecular Biology. Recombinant Gene Expression Protocols (Balbás, P. and Lorence, A., eds.), Humana, Totowa, NJ, 267, 15–51.Google Scholar
  117. 116.
    Jem, J. K., Fateen, S., and Michaels, J. (1994) Mixing phenomena in industrial bioreactors with perfusion spin filters, in Animal Cell Technology: Products of Today. Prospects for Tomorrow (Spier, R. E., Griffits, J. B., and Berthold, W., eds.), Butterworth Heinemann, Oxford, UK, pp. 392–396.Google Scholar
  118. 117.
    Dalm, M. C. F., Jansen, M., Keijzer, T. M. P., et al. (2005) Stable hydridoma cultivation in a pilot-scale acoustic perfusion system: Long-term process performance and effect of the recirculation rate. Biotechnol. Bioeng. 91, 894–900.PubMedGoogle Scholar
  119. 118.
    Palomares, L. A., López, S., and Ramírez, O. T. (2004) Utilization of oxygen uptake rate to assess the role of glucose and glutamine in the metabolism of insect cell cultures. Biochem. Eng. J. 19, 87–93.Google Scholar
  120. 119.
    Curtis, W. R. (2000) Hairy roots, bioreactor growth, in The Encyclopedia of Cell Technology, vol. 2: (Spier, R. E., ed.), John Wiley and Sons, New York, NY, pp. 827–841.Google Scholar
  121. 120.
    Gerecht-Nir, S., Cohen, S., and Itskovitz-Eldor, J. (2004) Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol. Bioeng. 86, 493–502.PubMedGoogle Scholar
  122. 121.
    Bibila, T. A., and Robinson, D. K. (1995) In pursuit of the optimal fed-batch operation process for monoclonal antibody production. Biotechnol. Prog. 11, 1–13.PubMedGoogle Scholar
  123. 122.
    Palomares, L. A., and Ramírez, O. T. (1996) The effect of dissolved oxygen tension and the utility of oxygen uptake rate in insect cell culture. Cytotechnol. 22, 225–237.Google Scholar
  124. 123.
    Hevehan, D. L. and Miller, W. M. (1999) Hypoxia, effects on animal cells, in Encyclopedia of Bioprocess Technology, Fermentation, Biocatalysis and Bioseparation (Flickinger, M. C., and Drew, S. W., eds.), John Wiley & Sons, New York, pp. 1418–1433.Google Scholar
  125. 124.
    Rhiel, M. and Murhammer, D. W. (1995) The effect of oscillating dissolved oxygen concentrations on the metabolism of a Spodoptera frugiperda IPLB-Sf21-AE clonal isolate. Biotechnol. Bioeng. 47, 640–650.PubMedGoogle Scholar
  126. 125.
    Kimura, R. and Miller, W. M. (1997) Glycosylation of CHO-derived recombinant tPA produced under elevated pCO2. Biotechnol. Prog. 13, 311–317.PubMedGoogle Scholar
  127. 126.
    Goldman, M. H., James, D. C., Rendall, M., Ison, A. P., Hoare, M., and Bull, A. T. (1998) Monitoring recombinant human interferon-gamma N-glycosylation during perfused fluidized-bed and stirred tank batch culture of CHO cells. Biotechnol. Bioeng. 60, 596–607.PubMedGoogle Scholar
  128. 127.
    Hayter, P. M., Curling, E. M. A., Baines, A. J., et al. (1992) Glucose-limited chemostat culture of Chinese hamster ovary cells producing recombinant human interferon-γ. Biotechnol. Bioeng. 39, 327–335.PubMedGoogle Scholar
  129. 128.
    Cudna, R. E. and Dickson, A. J. (2002) Endoplasmic reticulum signaling as a determinant of recombinant protein expression. Biotechnol. Bioeng. 81, 56–65.Google Scholar
  130. 129.
    Lipscomb, M. L., Palomares, L. A., Hernández, V., Ramírez, O. T., and Kompala, D. S. (2005) Effect of production method and gene amplification on the glycosylation pattern of a secreted reporter protein in CHO cells. Biotechnol. Prog. 21, 40–49.PubMedGoogle Scholar
  131. 130.
    Osman, J. J., Birch, J., and Varley, J. (2002) The response of GS-NS0 myeloma cells to single and multiple pH perturbations. Biotechnol. Bioeng. 79, 398–407.PubMedGoogle Scholar
  132. 131.
    Andersson, H. and van den Berg, A. (2004) Microtechnologies and nanotechnologies for single cell analysis. Curr. Opinion Biotechnol. 15, 44–49.Google Scholar
  133. 132.
    Samorski, M., Muller-Newen, G., and Buchs, J. (2005) Quasi-continuous combined scattered light and fluorescence measurements: A novel measurement technique for shaken microtier plates. Biotechnol. Bioeng. 92, 61–68.PubMedGoogle Scholar
  134. 133.
    Harms, P., Kostov, Y., French, J. A., et al. Design and performance of a 24-station high throughput microbioreactor. Biotechnol. Bioeng. 93, 6–13.Google Scholar
  135. 134.
    Lara, A. R., Vázquez, C., Gosset, G., Bolívar, F., López-Munguía, A., and Ramírez, O. T. (2006) Engineering Escherichia coli to improve culture performance and reduce formation of by-products during recombinant protein production under transient intermittent anaerobic conditions. Biotechnol. Bioeng. 94, 1164–1175.PubMedGoogle Scholar
  136. 135.
    Kenty, B., Li, Z., Vanden, T., and Lee, S. (2005) Mixing in laboratory-scale bioreactors used for mammalian cell culture. Presented at the 229th American Chemical Society National Meeting, San Diego, CA.Google Scholar
  137. 136.
    Leckie, F., Scragg, A. H., and Cliffe, K. C. (1991) Effect of bioreactor design and agitator speed on the growth and alkaloid accumulation by cultures of Catharantus roseus. Enzyme Microb. Technol. 13, 296–305.Google Scholar
  138. 137.
    Jolicoeur, M., Chavarie, C., Carreu, P. J., and Archambault, J. (1992) Development of a helicalribbon impeller bioreactor for high density plant cell suspension culture. Biotechnol. Bioeng. 39, 511–521.PubMedGoogle Scholar
  139. 138.
    Kiss, R., Croughan, M., Trask, J., et al. (1994) Mixing time characterization in large scale mammalian cell bioreactors. AIChE Annual meeting, November 1994, San Francisco, CA. Paper No 55c.Google Scholar
  140. 139.
    Vrábel, P., van der Lans, R. G. J. M., Luyben, K. Ch. A. M., Boon, L., and Nienow, A. (2000) Mixing in large-scale vessels with multiple radial or radial and axial up-pumping impellers: modelling and measurements. Chem. Eng. Sci. 55, 5881–5896.Google Scholar
  141. 140.
    Schügerl, K. (1993). Comparison of different bioreactor performances. Bioprocess Eng. 9, 215–223.Google Scholar
  142. 141.
    Sweere, A. P. J., Luyben, K. Ch. A. M., and Kossen, N. W. F. (1987) Regime analysis and scale-down: tools to investigate the performance of bioreactors. Enzyme Microb. Technol. 9, 386–398.Google Scholar
  143. 142.
    Namdev, P. K., Irwin, N., Thompson, B. G., and Gray, M. R. (1993) Effect of oxygen fluctuations on recombinant Escherichia coli fermentation. Biotechnol. Bioeng. 41, 666–670.PubMedGoogle Scholar
  144. 143.
    Neubauer, P., Häggstrom, L., and Enfors, S. O. (1995) Influence of substrate oscillations on acetate formation and growth yield in E. coli glucose limited fed-batch fermentations. Biotechnol. Bioeng. 47, 139–146.PubMedGoogle Scholar
  145. 144.
    Sweere, A. P. J., Janse, L., Luyben, K. Ch. A. M., and Kossen, N. W. F. (1988) Experimental simulation of oxygen profiles and their influence of Baker's yeast production: II. Two-fermenter system. Biotechnol. Bioeng. 31, 579–586.PubMedGoogle Scholar
  146. 145.
    Sweere, A. P. J., Matla, Y. A., Zandvliet, J., Luyben, K. Ch. A. M., and Kossen, N. W. F. (1988) Experimental simulation of glucose fluctuations. The influence of continually changing glucose concentrations of the fed batch baker's yeast production. Appl. Microbiol. Biotechnol. 28, 109–115.Google Scholar
  147. 146.
    Sweere, A. P. J., Mesters, J. R., Janse, L., Luyben, K. Ch. A. M., and Kossen, N. W. F. (1988) Experimental simulation of oxygen profiles and their influence of baker's yeast production: I. One-fermenter system. Biotechnol Bioeng. 31, 567–578.PubMedGoogle Scholar
  148. 147.
    George, S., Larsson, G., and Enfors, S. O. (1993) A scale-down two-compartmentreator with controlled substrate oscillations: metabolic response of Saccharomyces cerevisiae. Bioprocess Eng. 9, 249–257.Google Scholar
  149. 148.
    Abel, C., Hübner, U., and Schügerl, K. (1994) Transient behaviour of Baker's yeast during enforced periodical variation of dissolved oxygen concentration. J. Biotechnol. 32, 45–47.PubMedGoogle Scholar
  150. 149.
    Alexeeva, S., de Kort, B., Sawers, G., Hellingwerf, K. J., and Teixeira de Mattos, M. J. (2000) Effects of limited aeration and of the arcAB system on intermediary pyruvate catabolism in Escherichia coli. J Bacteriol. 182, 4934–4940.PubMedGoogle Scholar
  151. 150.
    Carlson, R. and Srienc, F. (2004) Fundamental Escherichia coli biochemical pathways for biomass and energy production: creation of overall flux states. Biotechnol. Bioeng. 86, 149–162.PubMedGoogle Scholar
  152. 151.
    Vemuri, G. N., Minning, T. A., Altman, E., and Eiteman, M. A. (2005) Physiological response of central metabolism in Escherichia coli to deletion of pyruvate oxidase and introduction of heterologous pyruvate carboxylase. Biotechnol. Bioeng. 90, 64–76.PubMedGoogle Scholar
  153. 152.
    Ramírez, O. T. and Mutharasan, R. (1990) Cell cycleand growth phase-dependent variations in size distribution, antibody productivity and oxygen demand in hybridoma cultures. Biotechnol. Bioeng. 36, 839–848.PubMedGoogle Scholar
  154. 153.
    Higareda, A. E., Possani, L. D., and Ramírez, O. T. (1997) The use of culture redox potential and oxygen uptake rate for assessing glucose and glutamine depletion in hybridoma cultures. Biotechnol. Bioeng. 56, 555–563.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Alvaro R. Lara
    • 1
  • Enrique Galindo
    • 2
  • Octavio T. Ramírez
    • 1
  • Laura A. Palomares
    • 1
    Email author
  1. 1.Departamento de Medicina Molecular y BioprocessosInstituto de Biotecnologia Universidad Nacioral Autónoma de México (UNAM)Cuerravaca, MorelosMéxico
  2. 2.Departamento de Ingeniería Celular y BiocatálisisInstituto de Biotecnologia Universidad Nacioral Autónoma de México (UNAM)Cuerravaca, MorelosMéxico

Personalised recommendations