Molecular Biotechnology

, Volume 34, Issue 3, pp 303–315 | Cite as

Analysis of the quality of contact pin fabricated oligonucleotide microarrays

  • Amy X. Yang
  • Josef Mejido
  • Bahaskar Bhattacharya
  • David Petersen
  • Jing Han
  • Ernest S. Kawasaki
  • Raj K. Puri


As the quality of microarrays is critical to successful experiments for data consistency and validity, a reliable and convenient quality control method is needed. We describe a systematic quality control method for large-scale genome oligonucleotide arrays. This method is comprised of three steps to assess the quality of printed arrays. The first step involves assessment of the autofluorescence property of DNA. This step is convenient, quick to perform, and allowed reuse of every array. The second step involves hybridization of arrays with Cy3-labeled 9-meroligonucleotide target to asess the quality and stability of oligonucleotides. Because this step consumed arrays, one or two arrays from each batch were used to complement the quality control data from autofluorescence. The third step involves hybridization of arrays from every batch with transcripts derived from two cell lines to asess data consistency. These hybridizations were able to distinguish two closely related tissue samples by identifying a cluster of 20 genes that were differently expressed in U87MG and T98G glioblastoma cell lines. In addition, we standardized two parameters that significantly enhanced the quality of arrays. We found that longer pin contact time and crosslinking oligonucleotides at 400 mJ/cm2 were optimal for the highest hybridization intensity. Taken together, these results in indicate that the quality of spotted oligonucleotide arrays should be assessed by at least two methods, autofluorescence and 9-mer hybridization before arrays are used for hybridization experiments.

Index Entries

Quality control printed microarrays 70-mer oligonucleotide array autofluorescence 9-mer nucleotide hybridization quality testing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hegde, P., Qi, R., Gaspard, R., et al. (2001) Identification of tumor markers in models of human colorectal cancer using a 19,200-element complementary DNA microarray. Cancer Res., 61, 7792–7797.PubMedGoogle Scholar
  2. 2.
    Bekal, S., Brousseau, R., Masson, L., Prefontaine, G., Fairbrother, J., and Harel, J. (2003) Rapid identification of Escherichia coli pathotypes by virulence gene detection with DNA microarrays. J. Clin. Microbiol. 41, 2113–2125.PubMedCrossRefGoogle Scholar
  3. 3.
    Bhattacharya, B., Miura, T., Brandenberger, R., et al. (2004) Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 103, 2956–2964.PubMedCrossRefGoogle Scholar
  4. 4.
    Bloom, G., Yang, I. V., Boulware, D., Kwong, K. Y., Coppola, D., Eschrich, S., Quackenbush, J., Yeatman, T. J. (2004) Multi-platform, multi-site, microarray-based human tumor classification. Am. J. Pathol. 164, 9–16.PubMedGoogle Scholar
  5. 5.
    McGall, G., Labadie, J., Brock, P., Wallraff, G., Nguyen, T., and Hinsberg, W. (1996) Light-directed systhesis of high-density oligonucleotide arrays using semiconductor photoresists. Proc. Natl. Acad. Sci. USA 93, 13,555–13,560.CrossRefGoogle Scholar
  6. 6.
    Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.PubMedCrossRefGoogle Scholar
  7. 7.
    Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P., and Trent, J. M. (1999) Expression profiling using cDNA microarrays. Nat. Genet. 21, 10–14.PubMedCrossRefGoogle Scholar
  8. 8.
    Liu, Y. and Rauch, C. B. (2003) DNA probe attachment on plastic surfaces and microfluidic hybridization array channel devices with sample oscillation. Anal. Biochem. 317, 76–84.PubMedCrossRefGoogle Scholar
  9. 9.
    Okamoto, T., Suzuki, T., and Yamamoto, N. (2000) Microarray fabrication with covalent attachement of DNA using bubble jet technology. Nat. Biotechnol. 18, 438–441.PubMedCrossRefGoogle Scholar
  10. 10.
    Hughes, T. R., Mao, M., Jones, A. R., et al. (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19, 342–347.PubMedCrossRefGoogle Scholar
  11. 11.
    Reese, M. O., van Dam, R. M., Scherer, A., and Quake, S. R. (2003) Microfabricated fountain pens for high-density DNA arrays. Genome Res. 13, 2348–2352.PubMedCrossRefGoogle Scholar
  12. 12.
    Battaglia, C., Salani, G., Consolandi, C., Bernardi, L. R., and De Bellis, G. (2000) Analysis of DNA microarrays by non-destructive fluorescent staining using SYBR Green II. Biotechniques 29, 78–81.PubMedGoogle Scholar
  13. 13.
    Shearstone, J. R., Allaire, N. E., Getman, M. E., and Perrin, S. (2002) Nondestructive quality control for microarray production. Biotechniques 32, 1051–1057.PubMedGoogle Scholar
  14. 14.
    Experimental protocol ( Scholar
  15. 15.
    NCI microarray manual ( Scholar
  16. 16.
    Microarray database (mAdb) ( Scholar
  17. 17.
    Wang, H. Y., Malek, R. L., Kwitek, A. E., et al. (2003) Assessing, unmodified 70-mer oligonucleotide probe performance on glass-slide microarrays. Genome Biol. 4, R5.PubMedCrossRefGoogle Scholar
  18. 18.
    Hessner, M. J., Meyer, L., Tackes, J., Muheisen, S., Wang, X. (2004) Immobilized probe and glass surface chemistry as variables in microarray fabrication. BMC Genomics 1, 53–60.CrossRefGoogle Scholar
  19. 19.
    Hessner, M. J., Wang, X., Hulse, K., et al. (2003) Three color cDNA microarrays: quantitative assessment through the use of fluorescein-labeled probes. Nucl. Acids Res. 31, e14.PubMedCrossRefGoogle Scholar
  20. 20.
    Joshi, B. H., Plautz, G. E., and Puri, R. K. (2000) Interleukin-13 receptor alpha chain: a novel tumor-associated transmembrane protein in primary explants of human malignant gliomas. Cancer Res. 60, 1168–1172.PubMedGoogle Scholar
  21. 21.
    User Manual ( Scholar
  22. 22.
    Wang, X., Ghosh, S., and Guo, S. W. (2001) Quantitative quality control in microarray image processing and data acquisition. Nucleic Acids Res. 29, E75–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Hautaniemi, S., Edgren, H., Vesanen, P., et al. (2003) A novel strategy for microarray quality control using Bayesian networks. Bioinformatics 19, 2031–2038.PubMedCrossRefGoogle Scholar
  24. 24.
    Gollub, J., Ball, C. A., Binkley, G., et al. (2003) The Stanford Microarray Database: data access and quality assessment tools. Nucleic Acids Res. 31, 94–96.PubMedCrossRefGoogle Scholar
  25. 25.
    Burgoon, L. D., Eckel-Passow, J. E., Gennings, C., et al. (2005) Protocols for the assurance of microarray data quality and process control. Nucleic Acids Res. 33, e172.PubMedCrossRefGoogle Scholar
  26. 26.
    Kim, K., Page, G. P., Beasley, T. M., Barnes, S., Scheirer, K. E., and Allison, D. B. (2006) A proposed metric for assessing the measurement quality of individual microarrays. BMC Bioinformatics 7, 35.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Amy X. Yang
    • 1
  • Josef Mejido
    • 1
  • Bahaskar Bhattacharya
    • 1
  • David Petersen
    • 2
  • Jing Han
    • 1
  • Ernest S. Kawasaki
    • 2
  • Raj K. Puri
    • 1
  1. 1.Tumor Vaccines and Biotechnology Branch, Division of Cellularand Gene Therapies, Center for Biologics evaluation and ResearchFood and Drug AdministrationBithesda
  2. 2.Advanced Technology Center, Center for Cancer ResearchNational Cancer InstituteGaithersburg

Personalised recommendations