Advertisement

Molecular Biotechnology

, Volume 34, Issue 3, pp 293–301 | Cite as

Molecular characterization of cDNA encoding resistance gene-like sequences in Buchloe dactyloides

  • Hikmet Budak
  • Zeynep Kasap
  • Robert C. Shearman
  • Ismail Dweikat
  • Ugur Sezerman
  • Abid Mahmood
Research

Abstract

Current knowledge of resistance (R) genes and their use for genetic improvement in buffalograss (Buchloe dactyloides [Nutt.] Engelm.) lag behind most crop plants. This study was conducted to clone and characterize cDNA encoding R gene-like (RGL) sequences in buffalograss. This report is the first to clone and characterize of buffalograss RGLs. Degenerate primers designed from the conserved motifs of known R genes were used to amplify RGLs and fragments of expected size were isolated and cloned. Sequence analysis of cDNA clones and analysis of putative translation products revealed that most encoded amino acid sequences shared the similar conserved motifs found in the cloned plant disease resistance genes PRS2, MLA6, L6, RPMI, and Xa1. These results indicated diversity of the R gene candidate sequences in buffalograss. Analysis of 5′ rapid amplification of cDNA ends (RACE), applied to investigate upstream of RGLs, indicated that regulatory sequences such as TATA box were conserved among the RGLs identified. The cloned RGL in this study will further enhance our knowledge on organization, function, and evolution of R gene family in buffalo grass. With the sequences of the primers and sizes of the markers provided, these RGL markers are readily available for use in a genomics-assisted selection in buffalograss.

Index Entries

Buffalograss cDNA molecular evolution resistance genes RACE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wenger, L. E. (1943) Buffalograss. Kansas Agr. Expt. Sta. Bul. 321, 1–78.Google Scholar
  2. 2.
    Beard, J.B. (1973) Turfgrass: science and culture. Prentice-Hall, Englewood Cliffs NJ.Google Scholar
  3. 3.
    Riordan, T. (1991) Buffalograss. Grounds Maint. 26, 12–14.Google Scholar
  4. 4.
    Baxendale, F. P., Heng-Moss, T. M., and Riordan, T. P. (1999). Blissus occiduus (Hemiptera: Lygaeidae): a chinch bug pest new to buffalograss turf. J. Econ. Entomol. 92, 1172–1176.Google Scholar
  5. 5.
    Johnson-Cicalese, J. M., Baxendale, F. P., Riordan, T. P., and Heng-Moss, T. M. (1998) Identification of mealybug (Homoptera: Pseudococcidae) resistant turf-type buffalograss germplasm. J. Econ. Entomol. 91, 340–346.Google Scholar
  6. 6.
    Schuler, T. H. and Poppy, G. M. (1998) Insect-resistant transgenic plants. Tibtech 16, 168–175.Google Scholar
  7. 7.
    Budak, H., Shearman, R. C., and Dweikat, I. (2004) Cloning and characterization of resistance gene like sequences in warm season turf grass species. Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Science, Las Vegas, NV, pp. 225–230.Google Scholar
  8. 8.
    Flor, H. H. (1971) Current status of the gene for gene concept. Annu. Rev. Phytopathol. 9, 275–296.CrossRefGoogle Scholar
  9. 9.
    Keen, N. T. (1990) Gene-for-gene complimentary in plant-pathogen interactions. Annu. Rev. Genet. 24, 447–463.PubMedCrossRefGoogle Scholar
  10. 10.
    Islam, M. R. and Mayo, G. M. E. (1990) A compendium on host genes in flax conferring resistance to flax rust. Plant Breeding 104, 89–100.CrossRefGoogle Scholar
  11. 11.
    Islam, M. R. and Shepherd, K. W. (1991) Present status of genetic of rust resistance in flax. Euphytica 55, 255–268.CrossRefGoogle Scholar
  12. 12.
    Hulbert, S. H., Webb, C. A., Smith, S. M., and Sun, Q. (2001) Resistance gene complexes: evolution and utilization. Annu. Rev. Phytopathol. 39, 285–312.PubMedCrossRefGoogle Scholar
  13. 13.
    Hammond-Kosack K. and Jones, J. (1997) Plant disease resistance genes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 575–608.PubMedCrossRefGoogle Scholar
  14. 14.
    Richter, T. E. and Ronald, P. C. (2000) The evolution of disease resistance genes. Plant Mol. Biol. 42, 195–204.PubMedCrossRefGoogle Scholar
  15. 15.
    Baker, B., Zambryski, P., Staskawicz, B., and DineshKumar S. P. (1997) Signaling in plant-microbe interactions. Science 276, 726–733.PubMedCrossRefGoogle Scholar
  16. 16.
    Saraste M., Sibbald, P. R., and Wittinghofer, A. (1990) The P-loop—acommon motif in ATP-and GTP-binding proteins. Trends Biochem. Sci. 15, 430–434.PubMedCrossRefGoogle Scholar
  17. 17.
    Tameling, W. I., Elzinga, S. D., Darmin, P. S., et al. (2002) The tomato R gene product 1-2 and MI-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14, 2929–2939.PubMedCrossRefGoogle Scholar
  18. 18.
    Jones, D. A. and Jones, J. D. G. (1997) The role of leucine-rich repeats proteins in plant defenses. Adv. Bot. Res. 24, 89–167.CrossRefGoogle Scholar
  19. 19.
    Kajava, A. V. (1998) Structural diversity of leucinerich repeat proteins. J. Mol. Biol. 277, 519–527.PubMedCrossRefGoogle Scholar
  20. 20.
    Liu, J. J. and Ekramoddoullah, A. K. M. (2003) Isolation, genetic variation and expression of TIR-NBS-LRR resistance gene analogs from western while pine (Pinus monticola Dougl. ex. D. Don.). Mol. Gen. Genomics 270, 432–441.CrossRefGoogle Scholar
  21. 21.
    Meyers, B. C., Dickerman, A. W., Michelmore, R. W., Sivaramakrishnan, S., Sobral, B. W., and Young, N. D. (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 20, 317–332.PubMedCrossRefGoogle Scholar
  22. 22.
    Pan, Q., Liu, Y. S., Budai-Hadrian, O., et al. (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155, 309–322.PubMedGoogle Scholar
  23. 23.
    Cannon, S. B., Zhu, H., Baumgarten, A. M., Spangler, R., May, G., Cook, D. R., and Young, N.D. (2002) Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J. Mol. Evol. 54, 548–562.PubMedCrossRefGoogle Scholar
  24. 24.
    Donald, T. M., Pellerone, F., Adam-Blondon, A.-F. Boquet, A., Thomas, M. R., and Dry, I. B. (2002) Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theor. Appl. Genet. 104, 610–618.PubMedCrossRefGoogle Scholar
  25. 25.
    Kanazin, V., Marek, L. F., and Shoemaker, R. C. (1996) Resistance gene analogs are conserved and clustered in soybean. Proc. Nat. Acad. Sci. USA 93, 11746–11750.PubMedCrossRefGoogle Scholar
  26. 26.
    Yu, Y. G., Bussand, G. R., and Maroof, M. A. (1996) Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc. Natl. Acad. Sci. USA 93, 11,751–11,756.CrossRefGoogle Scholar
  27. 27.
    Reeder, J. R. (1971) Notes on Mexican grasses IX. Miscellaneous chromosome numbers. Brittonia 23, 105–117.CrossRefGoogle Scholar
  28. 28.
    Huff, D. R., Peakall, R., and Smouse, P. E. (1993) RAPD variation within and among natural populations of outcrossing buffalograss [Buchloe dactyloides(Nutt.) Engelm.]. Theor. Appl. Genet. 86, 927–934.CrossRefGoogle Scholar
  29. 29.
    Johnson, P. G., Riordan, T. P., and Arumuganathan, K. (1998) Ploidy level determinations in buffalograss clones and populations. Crop Sci. 38, 478–482.CrossRefGoogle Scholar
  30. 30.
    Johnson, P. G. and Riordan, T. P. (2001) Effect of unbalanced chromosome number and inbreeding on fertility and plant vigor in buffalograss. Intl. Turf. Res. J. 9, 176–179.Google Scholar
  31. 31.
    Budak, H., Sherman, R. C., Parmaksiz, I., Guassoin, R. E., Riordan, T. P., and Dweikat, I. (2004) Molecular characterization of buffalograss germplasm using sequence related amplified polymorphism markers. Theor. Appl. Genet. 108, 328–334.PubMedCrossRefGoogle Scholar
  32. 32.
    Budak, H., Shearman, R. C., Parmaksiz, I., and Dweikat, I. (2004) Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using using ISSRs, SSRs, RAPDs, SRAPs. Theor. Appl. Genet. 109, 280–288.PubMedCrossRefGoogle Scholar
  33. 33.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., et al. (1997) Gappel BL AST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.PubMedCrossRefGoogle Scholar
  34. 34.
    Badak, H., Shearman, R. C., and Dweikat, I. (2005) Comparative sequence analysis to identify functional elements for functional genomics. Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Science, Las Vegas, NV, pp 3–7.Google Scholar
  35. 35.
    Traul, T. W. (1994) The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide binding sites. Eur. J. Biochem. 222, 9–19.CrossRefGoogle Scholar
  36. 36.
    Kinoshita, K., Sdanami, K., Kidera, A., and Go, N. (1999) Structural motif of phosphate binding site common to various protein super families: all against all structural comparison of protein mononucleotide complexes. Protein Eng. 12, 11–14.PubMedCrossRefGoogle Scholar
  37. 37.
    Meyers, B. C., Kozik, A., Griego, A., Kuang, H., and Michelmore, R. W. (2003) Genome wide analysis of NBS-LRR encoding genes in Arabidopsis. Plant Cell 15, 809–834.PubMedCrossRefGoogle Scholar
  38. 38.
    Parniske, M., Hammond-Kossack, K. E., Golstein, C., et al. (1997) Novel disease resistance specificities result from the sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 91, 821–832.PubMedCrossRefGoogle Scholar
  39. 39.
    Song, W. Y., Pi, L. Y., Wang, G. L., Gardner, J., Holsten, T., and Ronal, P. C. (1997) Evolution of the rice Xa21 disease resistance gene family. Plant Cell 9, 1279–1287.PubMedCrossRefGoogle Scholar
  40. 40.
    Meyers, B. C., Shen, K. A., Rohani, P., Gaut, B., and Michelmore, R. W. (1998) Receptor like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell 10, 1833–1846.PubMedCrossRefGoogle Scholar
  41. 41.
    Shen, K. A., Chin, D. B., Arroyo-Garcia, R., Ochoa, O. E., and Lavelle, D. O. (2002) Dm3 isone member of a large constituvely expressed family of nucleotide binding site-leucine rich repeat encoding genes. Mol. Plant Microbe Interact 15, 251–261.PubMedCrossRefGoogle Scholar
  42. 42.
    Seah, S., Bariana, H., Jahier, J., Sivasithamparam, K., and Lagudah, E. S. (2001) Cloning and characterization a family of disease resistance gene analogs from wheat and barley. Theor. Appl. Genet. 97, 937–945.CrossRefGoogle Scholar
  43. 43.
    Zhang, L. P., Khan, A., Nino-Liu, D., and Foolad, M. R. (2002) A molecular linkage map of tomato displaying chromosomal locations of resistance gene analogs based on a Lhcopersicon esculantum x Lycopersicon hiersutum cross. Genome 45, 133–146.PubMedCrossRefGoogle Scholar
  44. 44.
    Lopez, C. E., Acosta, I. F., Jara, C., et al. (2003) Identifying resistance gene analogs associated with the resistance to different pathogens in common bean. Phytopathology 93, 88–95.CrossRefPubMedGoogle Scholar
  45. 45.
    Ramalingam, J., Vera-Cruz, C. M., Kukreja, K., et al. (2003) Candid ate defense genes from rice, barley and maize and their association with qualitative and quantitative resistance in rice. Mol. Plant Microbe Interact. 16, 14–24.PubMedCrossRefGoogle Scholar
  46. 46.
    Lagudah, E. S., Moullet, O., and Appels, R. (1997) Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome 40, 659–665.PubMedGoogle Scholar
  47. 47.
    Halterman, D., Zhou, D., Wei, F., Wise, R. P., and Schulze-Lefert, P. (2001) The MLA6 coiled-coil, NBS-LRR protein confers AvrMIa6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J. 25, 335–348.PubMedCrossRefGoogle Scholar
  48. 48.
    Yoshimura, S., Yamanouchi, U., Katayose, Y., et al. (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc. Natl. Acad. Sci. USA 95, 1663–1668.PubMedCrossRefGoogle Scholar
  49. 49.
    Sakamoto, K., Tada, Y., Yokozeki, Y., et al. (1999) Chemical induction of disease resistance in rice is correlated with the expression of a gene encoding a nucleotide binding site and leucine-rich repeats. Plant Mol. Biol. 40, 847–855.PubMedCrossRefGoogle Scholar
  50. 50.
    Botella, M. A., Coleman, M. J., Hughes, D. E., Nishimura, M. T., Jones, J. D., and Somerville, S. C. (1997) Map positions of 47 Arabidopsis sequences with sequence similarity to disease resistance genes. Plant J. 12, 1197–1211.PubMedCrossRefGoogle Scholar
  51. 51.
    Bent, A. F., Kunkel, B. N., Dahlbeck, D., et al. (1994) RPS2 of Arabidopsis thaliana: a leucine-rich repeal class of plant disease resistance genes. Science 265, 1856–1860.PubMedCrossRefGoogle Scholar
  52. 52.
    Warren, R. F., Henk, A., Mowery, P., Holub, E., and Innes, R. W. (1998) A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partinally suppresses multiple bacterial and downy mildew resistance genes. Plant Cell 10, 1439–1452.PubMedCrossRefGoogle Scholar
  53. 53.
    McDowell, J. M., Dhandaydham, M., Long, T. A., et al. (1998) Intragenic recombination and diversifying selection contribute to the evolution ofdowny mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10, 1861–1874.PubMedCrossRefGoogle Scholar
  54. 54.
    Grant, M. R., Godiard, L., Straube, E., et al. (1995) Structures of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269, 843–846.PubMedCrossRefGoogle Scholar
  55. 55.
    Lawrence, G. J., Finnegan, E. J., Ayliffe M. A., and Ellis, J. G. (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7, 1195–1206.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Hikmet Budak
    • 1
  • Zeynep Kasap
    • 1
  • Robert C. Shearman
    • 2
  • Ismail Dweikat
    • 2
  • Ugur Sezerman
    • 1
  • Abid Mahmood
    • 2
  1. 1.Biological Science and Bioengineering Program, Faculty of Engineering and Natural ScienceSabanci UniversityTuzla/IstanbulTurkey
  2. 2.Department of Agronomy and HorticultureUniversity of NebraskaLincoln

Personalised recommendations