Molecular Biotechnology

, Volume 34, Issue 1, pp 55–68 | Cite as

Mutant library construction in directed molecular evolution

Casting a wider net
  • Tian-Wen Wang
  • Hu Zhu
  • Xing-Yuan Ma
  • Ting Zhang
  • Yu-Shu Ma
  • Dong-Zhi WeiEmail author


Directed molecular evolution imitates the natural selection process in the laboratory to find mutant proteins with improved properties in the expected aspects by exploring the encoding sequence space. The success of directed molecular evolution experiment depends on the quality of artificially prepared mutant libraries and the availability of convenient high-throughput screening methods. Well-prepared libraries promise the possibility of obtaining desired mutants by screening a library containing a relatively small number of mutants. This article summarizes and reviews the currently available methodologies widely used in directed evolution practices in the hope of providing a general reference for library construction. These methods include error-prone polymerase chain reaction (epPCR), oligonucleotide-based mutagenesis, and genetic recombination exemplified by DNA shuffling and its derivatives. Another designed method is also discussed, in which B-lymphocytes are fooled to mutate nonantibody foreign proteins through somatic hypermutation (SHM).

Index Entries

Directed molecular evolution error-prone PCR oligonucleotide-based mutagenesis DNA shuffling mutator strain somatic hypermutation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen K. Q. and Arnold, F. H. (1993) Tuning the activity of an enzyme for unusual environments—sequential random mutagenesis of subtilisin, E for catalysis in dimethylformamide. Proc. Natl. Acad. Sci. USA 90, 5618–5622.PubMedCrossRefGoogle Scholar
  2. 2.
    Reetz, M. T., Zonta, A., Schimossek, K., Liebeton, K., and Jaeger, K. E. (1997) Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution. Angew. Chem. Int. Ed. Engl. 36, 2830–2832.CrossRefGoogle Scholar
  3. 3.
    Stemmer, W. P. C. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhao, H., Giyer, L., Affholter, J. A. and Arnold, F. H. (1998). Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechniol. 16, 258–261.CrossRefGoogle Scholar
  5. 5.
    Crameri, A., Raillard, S. A., Bermudez, E., and Stemmer, W. P. C. (1998). DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291.PubMedCrossRefGoogle Scholar
  6. 6.
    Williams, G. J., Nelson, A. S., and Berry, A. (2004) Directed evolution of enzymes for biocatalysis and the life sciences. Cell Mol. Life Sci. 61, 3034–3046.PubMedCrossRefGoogle Scholar
  7. 7.
    Dahiyat, B. I. and Mayo, S. L. (1997) De novo protein design: fully automated sequence selection. Science 278, 82–87.PubMedCrossRefGoogle Scholar
  8. 8.
    Root, M. J., Kay, M. S., and Kim, P. S. (2001). Protein design of an HIV-1 entry inhibitor. Science 291, 884–888.PubMedCrossRefGoogle Scholar
  9. 9.
    Arnold, F. H. (2001) Combinatorial and computational challenges for biocatalyst design. Nature 409, 253–257.PubMedCrossRefGoogle Scholar
  10. 10.
    Wahler, D. and Reymond, J. L. (2001) High-throughput screening for biocatalysts. Curr. Opin. Biotechnol. 12, 535–544.PubMedCrossRefGoogle Scholar
  11. 11.
    Wahler, D. and Reymond, J. L. (2001) Novel methods for biocatalyst screening. Curr. Opin. Chem. Biol. 5, 152–158.PubMedCrossRefGoogle Scholar
  12. 12.
    Olsen, M., Iverson, B., and Georgiou, G. (2000) High-throughput screening of enzyme libraries. Curr. Opin. Biotechnol. 11, 331–337.PubMedCrossRefGoogle Scholar
  13. 13.
    Becker, S., Schmoldt, H. U., Adams, T. M., Wilhelm, S., and Kolmar, H. (2004) Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts. Curr. Opin. Biotechnol. 15, 323–329.PubMedCrossRefGoogle Scholar
  14. 14.
    Cohen, N., Abramov, S., Dror, Y., and Freeman, A. (2001). In vitro enzyme evolution: the screening challenge of isolating the one in a million. Trends Biotechnol. 19, 507–510.PubMedCrossRefGoogle Scholar
  15. 15.
    Schmidt, M. and Bornscheuer, U. T. (2005). High-throughput assays for lipases and esterases. Biomol. Eng. 22, 51–56.PubMedCrossRefGoogle Scholar
  16. 16.
    Aharoni, A., Griffiths, A. D., and Tawfik, D. S. (2005). High-throughput screens and selections of enzyme-encoding genes. Curr. Opin. Chem. Biol. 9, 210–216.PubMedCrossRefGoogle Scholar
  17. 17.
    Mullis, K. B. and Faloona, F. A. (1987). Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Methods Enzymol. 155, 335–351.PubMedCrossRefGoogle Scholar
  18. 18.
    Sun, F. (1995) The polymerase chain reaction and branching processes. J. Comput. Biol. 2, 63–86.PubMedCrossRefGoogle Scholar
  19. 19.
    Echert, K. A., and Kunkel, T. A. (1991). DNA polymerase fidelity and the polymerase chain reaction. PCR Methods Appl. 1, 17–24.Google Scholar
  20. 20.
    Brakmann, S. (2001). Discovery of superior enzymes by directed molecular evolution. Chem. Biochem. 2, 865–871.Google Scholar
  21. 21.
    Cadwell, C. and Joyce, G. F. (1992) Randomization of genes by PCR mutagenesis. PCR Methods Appl. 2, 28–33.PubMedGoogle Scholar
  22. 22.
    Cadwell, R. C. and Joyce, G. F. (1995) Mutagenic PCR. PCR Methods Appl. 3, 136–140.Google Scholar
  23. 23.
    Vartanian, J. P., Henry, M., and Wain-Hobson, S. (1996). Hypermutagenic PCR involving all four transitions and a sizeable proportion of transversions. Nucleic Acids Res. 24, 2627–2631.PubMedCrossRefGoogle Scholar
  24. 24.
    Shafikhani, S., Siegel, R. A., Ferrari, E., and Schellenberger, V. (1997). Generation of large libraries of random mutants in Bacillus subtilis by PCR-based plasmid multimerization. Bio Techniques 23, 304–310.Google Scholar
  25. 25.
    Lin-Goerke, J. L. Robbins, D. J., and Burczak, J. D. (1997) PCR-based random mutagenesis using manganese and reduced dNTP concentration. BioTechniques 23, 409–412.PubMedGoogle Scholar
  26. 26.
    McCarthy, J. K., Uzelac, A., Davis, D. F., and Eveleigh, D. E. (2004) Improved catalytic efficiency and active site modification of 1,4-beta-D-glucan glucohydrolase A from Thermotoga neapolitana by directed evolution. J. Biol. Chem. 279, 11495–11502.PubMedCrossRefGoogle Scholar
  27. 27.
    Ling, L. L., Keohavong, P., Dias, C., and Thilly, W. G. (1991). Optimization of the polymerase chain reaction with regard to fidelity: modified T7, Taq, and vent DNA polymerases. PCR Methods Appl. 1, 63–69.PubMedGoogle Scholar
  28. 28.
    Beckman, R. A., Mildvan, A. S., and Loeb, L. A. (1985) On the fidelity of DNA replication: manganese mutagenesis in vitro. Biochemistry 24, 5810–5817.PubMedCrossRefGoogle Scholar
  29. 29.
    Leung D. W., Chen, E., and Goeddel, D. V. (1989) A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Techniques 1, 11–15.Google Scholar
  30. 30.
    Zaccolo, M., Williams, D. M., Brown, D. M., and Gherardi, E. (1996). An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. J. Mol. Biol. 255, 589–603.PubMedCrossRefGoogle Scholar
  31. 31.
    Xu, H., Petersen, E. I., Petersen, S. B. and el-Gewely, M. R. (1999) Random mutagenesis libraries: optimization and simplification by PCR. Bio Techniques 27, 1102–1104, 1106, 1108.Google Scholar
  32. 32.
    Neylon, C. (2004) Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucleic Acids Res. 32, 1448–1459.PubMedCrossRefGoogle Scholar
  33. 33.
    Gelfand, D. H. and White, T. J. (1990) A guide to methods and applications. In PCR Protocols (Innis, M. A., ed). Academic Press Inc., California, pp. 129–141.Google Scholar
  34. 34.
    Biles, B. D. and Connolly, B. A. (2004) Low-fidelity Pyrococcus furiosus DNA polymerase mutants useful in error-prone PCR. Nucleic Acids Res. 32, e176.PubMedCrossRefGoogle Scholar
  35. 35.
    Ghadessy, F. J., Ramsay, N., Boudsocq, E., et al. (2004) Generic expansion of the substrate spectrum of a DNA polymerase by directed evolution. Nat. Biotechnol. 22, 755–759.PubMedCrossRefGoogle Scholar
  36. 36.
    Wong, T. S., Tee, K. L., Hauer, B., and Schwaneberg, U. (2004) Sequence saturation mutagenesis (SeSaM): a novel method for directed evolution. Nucleic Acids Res. 32, e26.PubMedCrossRefGoogle Scholar
  37. 37.
    Wong, T. S., Tee, K. L., Hauer, B., and Schwaneberg, U. (2005) Sequence saturation mutagenesis with tunable mutation frequencies. Anal Biochem. 341, 187–189.PubMedCrossRefGoogle Scholar
  38. 38.
    Spee, J. H., de Vos, W. M., and Kuipers, O. P. (1993). Efficient random mutagenesis method with adjustable mutation frequency by use of PCR and dITP Nucleic Acids Res. 21, 777–778.PubMedCrossRefGoogle Scholar
  39. 39.
    Ward, B. and Juehne, T. (1998) Combinatorial library diversity: probability assessment of library populations. Nucleic Acids Res. 26, 879–886.PubMedCrossRefGoogle Scholar
  40. 40.
    Palfrey, D., Picardo, M., and Hine, A. V. (2000) A new randomization assay reveals unexpected elements of sequence bias in model ‘randomized’ gene libraries: implications for biopanning. Gene 251, 91–99.PubMedCrossRefGoogle Scholar
  41. 41.
    Miyazaki, K. and Takenouchi, M. (2002) Creating random mutagenesis libraries using megaprimer PCR of whole plasmid. Bio Techniques 33, 1033–1034, 1036–1038.Google Scholar
  42. 42.
    Angelaccio, S. and Bonaccorsi di Patti, M. C. (2002) Site-directed mutagenesis by the megaprimer PCR method: variations on a theme for simultaneous introduction of multiple mutations. Anal. Biochem. 306, 346–349.PubMedCrossRefGoogle Scholar
  43. 43.
    Choi, K. H. and Schweizer, H. P. (2005) An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants. BMC Microbiol. 5, 30.PubMedCrossRefGoogle Scholar
  44. 44.
    Hogrefe, H. H., Cline, J., Youngblood, G. L., and Allen, R. M. (2002) Creating randomized amino acid libraries with the QuickChange Multi Site-Directed Mutagenesis Kit. Bio Techniques 33, 1158–1160, 1162, 1164–1165.Google Scholar
  45. 45.
    Zha, D., Eipper, A., and Reetz, M. T. (2003). Assembly of designed oligonucleotides as an efficient method for gene recombination: a new tool in directed evolution. ChemBioChem., 4, 34–39.PubMedCrossRefGoogle Scholar
  46. 46.
    Boder, E. T., Midelfort, K. S., and Witrup, K. D. (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl. Acad. Sci. USA 97, 10701–10705.PubMedCrossRefGoogle Scholar
  47. 47.
    Cho, C. M., Mulchandani, A., and Chen, W. (2004) Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos. Appl. Environ. Microbiol. 70, 4681–4685.PubMedCrossRefGoogle Scholar
  48. 48.
    Castle, L. A., Siehl, D. L., Gorton, R., et al. (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science, 304, 1151–1154.PubMedCrossRefGoogle Scholar
  49. 49.
    Reetz, M. T. (2004) Controlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications. Proc. Natl. Acad. Sci. USA 101, 5716–5722.PubMedCrossRefGoogle Scholar
  50. 50.
    Bessler, C., Schmitt, J., Maurer, K. H., and Schmid, R. D. (2003) Directed evolution of a bacterial alpha-amylase: toward enhanced pH-performance and higher specific activity. Protein Sci. 12, 2141–2149.PubMedCrossRefGoogle Scholar
  51. 51.
    Hatanaka, T. (2005) Identification of a key amino acid residue of Streotomyces phospholipase D for thermostability by in vivo DNA shuffling. Biochim. Biophys. Acta. 1722, 331–342.PubMedGoogle Scholar
  52. 52.
    Moore, G. L., Maranas, C. D., Lutz, S., and Benkovic, S. J. (2001) Predicting crossover generation in DNA shuffling. Proc. Natl. Acad. Sci. USA 98, 3226–3231.PubMedCrossRefGoogle Scholar
  53. 53.
    Sieber, V., Martinez, C. A., and Arnold, F. H. (2001). Libraries of hybrid proteins from distantly related sequences. Nat. Biotechnol. 19, 456–460.PubMedCrossRefGoogle Scholar
  54. 54.
    Ostermeier, M., Nixon, A. E., and Benkovic, S. J. (1999) Incremental truncation as a strategy in the engineering of novel biocatalysts. Bioorg. Med. Chem. 7, 2139–2144.PubMedCrossRefGoogle Scholar
  55. 55.
    Ostermeier, M., Nixon, A. E., Shim, J. H., and Benkovic, S. J. (1999) Combinatorial protein engineering by incremental truncation. Proc. Natl. Acad. Sci. USA 96, 3562–3567.PubMedCrossRefGoogle Scholar
  56. 56.
    Ostermeier, M., Shim, J. H., and Benkovic, S. J. (1999) A combinatorial approach to hybrid enzymes independent of DNA homology. Nat. Biotechnol. 17, 1205–1209.PubMedCrossRefGoogle Scholar
  57. 57.
    Lutz, S., Ostermeier, M., Moore, G. L., Maranas, C. D., and Benkovic, S. J. (2001) Creating multiple-cross-over DNA libraries independent of sequence identity. Proc. Natl. Acad. Sci. USA 98, 11248–11253.PubMedCrossRefGoogle Scholar
  58. 58.
    Walton, C. R., Booth, K., and Stockley, P. G. (1991) in Directed mutagenesis: a practical approach (McPherson, M. J., ed), IRL Press, Oxford, pp. 135–162.Google Scholar
  59. 59.
    Lai, Y. P., Huang, J., Wang, L. F., Li, J., and Wu, Z. R. (2004) A new approach to random mutagenesis in vitro. Biotechnol. Bioeng. 86, 622–627.PubMedCrossRefGoogle Scholar
  60. 60.
    Coia, G, Ayres, A., Lilley, G. G., Hudson, P. J., and Irving, R. A. (1997). Use of mutator cells as a means for increasing production levels of a recombinant anti-body directed against Hepatitis B. Gene 201, 203–209.PubMedCrossRefGoogle Scholar
  61. 61.
    Sleator, R. D., Gahan, C. G., and Hill, C. (2001) Mutations in the listerial proB gene leading to proline overproduction: effects on salt tolerance and murine infection. Appl. Environ. Microbiol. 67, 4560–4565.PubMedCrossRefGoogle Scholar
  62. 62.
    Farrow, K. A., Lyras, D., Polekhina, G., Koutsis, K., Parker, M. W., and Rood, J. I. (2002) Identification of essential residues in the Erm(B) rRNA methyltransferase of Clostridium perfringens. Antimicrob. Agents Chemother. 46, 1253–1261.PubMedCrossRefGoogle Scholar
  63. 63.
    Chusacultanachai, S. and Yuthavong, Y. (2004) Random mutagenesis strategies for construction of large and diverse clone libraries of mutated DNA fragments. Methods Mol. Biol. 270, 319–334.PubMedGoogle Scholar
  64. 64.
    Belanger, F., Theberge-Julien, G., Cunningham, P. R., and Brakier-Gingras, L. (2005) A functional relationship between helix 1 and the 900 tetraloop of 16S ribosomal RNA within the bacterial ribosome. RNA 11, 906–913.PubMedCrossRefGoogle Scholar
  65. 65.
    Bornscheuer, U. T., Altenbuchner, J., and Meyer, H. H. (1999) Directed evolution of an esterase: screening of enzyme libraries based on pH-indicators and a growth assay. Bioorg. Med. Chem. 7, 2169–2173.PubMedCrossRefGoogle Scholar
  66. 66.
    Amara, A. A., Steinbuchel, A., and Rehm, B. H. (2002) In vivo evolution of the Aeromonas punctata polyhydroxyalkanote (PHA) synthase: isolation and characterization of modified PHA synthases with enhanced activity. Appl. Microbiol. Biotechnol. 59, 477–482.PubMedCrossRefGoogle Scholar
  67. 67.
    Lu, X., Hirata, H., Yamaji, Y., Ugaki, M., and Namba, S. (2001) Random mutagenesis in a plant viral genome using a DNA repair-deficient mutator Escherichia coli strain. J. Virol. Methods 94, 37–43.PubMedCrossRefGoogle Scholar
  68. 68.
    Bachl, J., Carlson, C., Gray-Schopfer, V., Dessing, M., and Olsson, C. (2001) Increased transcription levels induce higher mutation rates in a hypermutating cell line. J. Immunol. 166, 5051–5057.PubMedGoogle Scholar
  69. 69.
    Papavasiliou, F. N., and Schatz, D. G. (2002) Somatic hypermutation of immunoglobulin genes merging mechanisms for genetic diversity. Cell 109, S35-S44.PubMedCrossRefGoogle Scholar
  70. 70.
    Martin, A., and Scharff, M. D. (2002) AID and mismatch repair in antibody diversification. Nat. Rev. Immunol. 2, 605–614.PubMedCrossRefGoogle Scholar
  71. 71.
    Neuberger, M. S., Harris, R. S., Di Noia, J., and Petersen-Mahrst S. K. (2003) Immunity through DNA deamination. Trends Biochem. Sci. 28, 305–312.PubMedCrossRefGoogle Scholar
  72. 72.
    Wang, C. L., Harper, R. A., and Wabl, M. (2004) Genome-wide somatic hypermutation. Proc. Natl. Acad. Sci. USA 101, 7352–7356.PubMedCrossRefGoogle Scholar
  73. 73.
    Wang, C. L., Yang, D. C., and Wabl, M. (2004) Directed molecular evolution by somatic hypermutation. Protein. Eng. Des. Set. 17, 659–664.CrossRefGoogle Scholar
  74. 74.
    Wang, L., Jackson, W. C., Steinbach, P. A., and Tsien, R. Y. (2004) Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl. Acad. Sci. USA 101, 16745–16749.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Tian-Wen Wang
    • 1
  • Hu Zhu
    • 1
  • Xing-Yuan Ma
    • 1
  • Ting Zhang
    • 1
  • Yu-Shu Ma
    • 1
  • Dong-Zhi Wei
    • 1
    Email author
  1. 1.State Key Laboratory of Bioreactor Engineering, New World Institute of BiotechnologyEast China University of Science and TechnologyShanghaiP. R. China

Personalised recommendations