Advertisement

Molecular Biotechnology

, Volume 32, Issue 2, pp 159–179 | Cite as

Chiral separation principles in chromatographic and electromigration techniques

  • Gerald Gübitz
  • Martin G. Schmid
Review

Abstract

Almost half of the drugs in use today are chiral. It is well established that the pharmacological activity is mostly restricted to one of the enantiomers (eutomer). There can be qualitative and quantitative differences in the activity of the enantiomers. In many cases, the inactive enantiomer (distomer) shows unwanted side effects or even toxic effects. Even if the side effects are not that drastic, the distomer has to be metabolized and this represents an unnecessary burden for the organism. Therefore, the development of methods for the separation of enantiomers, both on analytical and preparative scale, has become increasingly important.

Chromatographic techniques such as thin layer chromatography (TLC), gas chromatography (GC), supercritical fluid chromatography (SFC), and above all high-performance liquid chromatography (HPLC) have been used for enantiomer separation for about two decades. More recently, electromigration techniques, such as capillary electrophoresis and capillary electrochromatography, have been shown to be powerful alternatives to chromatographic methods. This review gives a short overview of different chiral separation principles and their application. Several new developments are discussed.

Index Entries

Enantioseparation chiral separation capillary electrophoresis capillary electrochromatography thin layer chromatography gaschromatography high-performance liquid chromatography supercritical fluid chromatography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schurig V. (2001) Separation of enantiomers by gas chromatography. J. Chromatogr. A. 906, 275–299.PubMedGoogle Scholar
  2. 2.
    Gübitz, G. (1990) Separation of drug enantiomers by HPLC using chiral stationary phases—a selective review. Chromatographia 30, 555–564.Google Scholar
  3. 3.
    Bojarski, J. (1997) Recent progress in chromatographic enantioseparations. Chem. Anal. 42, 139–185.Google Scholar
  4. 4.
    Gasparrini, F., Misiti, D., and Villani, C. (2001) HPLC chiral stationary phases based on low-molecular-mass selectors. J. Chromatogr. A 906, 35–50.PubMedGoogle Scholar
  5. 5.
    Subramanian G. (ed.) (1994) A practical approach to chiral separations by liquid chromatography. Wiley-VCH, Weinheim, Germany.Google Scholar
  6. 6.
    Ahuja, S. (ed.) (1997) Chiral separations-applications and technology, American Chemical Society. Washington DC.Google Scholar
  7. 7.
    Terfloth, G. (2001) Enantioseparations in super- and subcritical fluid chromatography. J. Chromatogr. A 906, 301–307.PubMedGoogle Scholar
  8. 8.
    Williams, K. L. and Sander, L. C. (1997) Enantiomer separations on chiral stationary phases in supercritical fluid chromatography. J. Chromatogr. A 785, 149–158.Google Scholar
  9. 9.
    Petersson, P. and Markides, K. E. (1994) Chiral separations performed by supercritical fluid chromatography. J. Chromatogr. A 666, 381–394.Google Scholar
  10. 10.
    Günther, K. and Möller, K. (1996) Handbook of Thin-Layer Chromatography. 2nd Edition (Sherma, J. and Fried, B., eds.), Marcel Dekker Inc., New York, NT, pp. 621–682.Google Scholar
  11. 11.
    Duncan, J. D. (1990) Chiral separations—A comparison of HPLC and TLC. J. Liq. Chromatogr. 13, 2737–2755.Google Scholar
  12. 12.
    Lepri, L. (1997) Enantiomer separation by thin-layer chromatography. J. Planar. Chromatogr. Modern TLC 10(5), 320–331.Google Scholar
  13. 13.
    Aboul-Enein, H. Y., El-Awady, M. I., Heard, C. M., and Nicholls, P. J. (1999) Application of thin-layer chromatography in enantiomeric chiral analysis—an overview. Biomed. Chromatogr. 13, 531–537.PubMedGoogle Scholar
  14. 14.
    Nishi, H. and Terabe, S. (1995) Optical resolution drugs by capillary electrophoretic techniques. J. Chromatogr. A 694, 245–276.Google Scholar
  15. 15.
    Fanali, S. (1996) Identification of chiral drug isomers by capillary electrophoresis. J. Chromatogr. A 735, 77–121.PubMedGoogle Scholar
  16. 16.
    Chankvetadze, B. (1997) Separation selectivity in chiral capillary electrophoresis with charged selectors. J. Chromatogr. A 792, 269–295.Google Scholar
  17. 17.
    Fanali, S. (1997) Controlling enantioselectivity in chiral capillary electrophoresis with inclusion-complexation. J. Chromatogr. A 792, 227–267.PubMedGoogle Scholar
  18. 18.
    Gübitz, G. and Schmid, M. G. (1997) Chiral separation principles in capillary electrophoresis. J. Chromatogr. A 792, 179–225.Google Scholar
  19. 19.
    Fanali, S. (2000) Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors. J. Chromatogr. A 875, 89–122.PubMedGoogle Scholar
  20. 20.
    Verleysen, K. and Sandra, P. (1998) Separation of chiral compounds by capillary-electrophoresis. Electrophoresis 19, 2798–2833.PubMedGoogle Scholar
  21. 21.
    Gübitz, G. and Schmid, M. G. (2000) Recent progress in chiral separation principles in capillary electrophoresis. Electrophoresis 21, 4112–4135.PubMedGoogle Scholar
  22. 22.
    Gübitz, G. and Schmid, M. G. (2000) Chiral separation by capillary electrochromatography (Minireview). Enantiomer 5, 5–11.PubMedGoogle Scholar
  23. 23.
    Wistuba, D. and Schurig, V. (2000) Enantiomer separation of chiral pharmaceuticals by capillary electrochromatography. J. Chromatogr. A 875, 255–276.PubMedGoogle Scholar
  24. 24.
    Dermaux, A. and Sandra, P. (1999) Applications of capillary electrochromatography. Electrophoresis 20, 3027–3065.PubMedGoogle Scholar
  25. 25.
    Wistuba, D. and Schurig, V. (2000) Recent progress in enantiomerseparation by CEC. Electrophoresis 21, 4036–4058.Google Scholar
  26. 26.
    Hjertén, S., Liao, J.-L., and Zhang, R. (1989) High-performance liquid chromatography on continuous polymer beds. J. Chromatogr. A 473, 273–275.Google Scholar
  27. 27.
    Subramanian, G. (ed.) (2000) Chiral Separation Techniques: A Practical Approach, Wiley-VCH, Weinheim, Germany.Google Scholar
  28. 28.
    Chankvetadze, B. (ed.) (2001) Chiral Separations, Elsevier Science, Amsterdam, The Netherlands.Google Scholar
  29. 29.
    Bhushan, R. and Joshi, S. (1993) Resolution of enantiomers of amino-acids by HPLC. Biomed. Chromatogr. 7, 235–250.PubMedGoogle Scholar
  30. 30.
    Zhou, Y., Luan, P., Liu, L., and Sun, Z. P. (1994) Chiral derivatizing reagents for drug enantiomers bearing hydroxyl-groups. J. Chromatogr. B 659, 109–126.Google Scholar
  31. 31.
    Bovingdon, M. E. and Webster, R. A. (1994) Derivatization reactions for neurotransmitters and their automation. J. Chromatogr. B 659, 157–183.Google Scholar
  32. 32.
    Campíns-Falcó, P., Sevillano-Cabeza, A., and Molina-Legua, C. (1994) Amphetamine and methamphetamine determinations in biological samples by high-performance liquid-chromatography. J. Liq. Chromatogr. 17, 731–747.Google Scholar
  33. 33.
    Görög, S., and Gazdag, M. (1994) Enantiomeric derivatisation for biomedical chromatography. J. Chromatogr. B 659, 51–84.Google Scholar
  34. 34.
    Srinivas, N. R., Shyu, W. C., and Barbhaiya, R. H. (1995) Gaschromatographic determination of enantiomers as diastereomers following pre-column derivatization and applications to pharmacokinetic studies: a review. Biomed. Chromatogr 9, 1–9.PubMedGoogle Scholar
  35. 35.
    Toyooka, T. (1996) Recent progress in liquid chromatographic enantioseparation based upon diastereomer formation with fluorescent chiral derivatization reagents. Biomed. Chromatogr. 10, 265–277.Google Scholar
  36. 36.
    Dalgliesh, C. E. (1952) The optical resolution of aromatic amino-acids on paper chromatograms. J. Chem. Soc. 137, 3940–3942.Google Scholar
  37. 37.
    Lipkowitz, K. B. (2001) Atomistic modelling of enantioselection in chromatography. J. Chromatogr. A 906, 417–442.PubMedGoogle Scholar
  38. 38.
    Gil-Av, E., Feibush, B., and Charles-Sigler, R. (1966) Separation of enantiomers by gas liquid chromatography with an optically active stationary phase. Tetrahedron Lett. 77, 1009–1015.Google Scholar
  39. 39.
    Frank, H., Nicholson, G. J., and Bayer, E. (1978) Chiral polysiloxanes for resolution of optical antipodes. Angew. Chem. Int. Ed. Engl. 17, 363–365.Google Scholar
  40. 40.
    Schurig, V. (2001) Separation of enantiomers by gas chromatography. J. Chromatogr. A 906, 275–299.PubMedGoogle Scholar
  41. 41.
    Dobashi, A., Dobashi, Y., and Hara, S. (1986) Enantioselectivity of hydrogen-bond association in liquid-solid chromatography. J. Liq. Chromatogr. 9, 243–267.Google Scholar
  42. 42.
    Dobashi, Y. and Hara, S. (1985) Direct resolution of enantiomers by liquid-chromatography with the novel chiral stationary phase derived from (R,R)-tartramide. Tetrahedron Lett. 26, 4217–4220.Google Scholar
  43. 43.
    Dobashi, Y. and Hara, S. (1987) A Chiral stationary phase derived from (R,R)-tartramide with broadened scope of application to the liquid-chromatographic resolution of enantiomers. J. Org. Chem. 52, 2490–2496.Google Scholar
  44. 44.
    Pirkle, W. H., House, D. W., and Finn, J. M. (1980) Broad-spectrum resolution of optical isomers using chiral high-performance liquid-chromatographic bonded phases. J. Chromatogr. 192, 143–158.Google Scholar
  45. 45.
    Pirkle, W. H., Finn, J. M., Schreiner, J. L., and Hamper, B. C. J. (1981) A widely useful chiral stationary phase for the high-performance liquid-chromatography separation of enantiomers. J. Am. Chem. Soc. 103, 3964–3966.Google Scholar
  46. 46.
    Pirkle, W. H., Welch, C. J., and Hyun M. H. (1983) A chiral recognition model for the chromatographic resolution of n-acylated 1-aryl-1-aminoalkanes. J. Org. Chem. 48, 5022–5026.Google Scholar
  47. 47.
    Welch, C. J. (1994) Evolution of chiral stationary phase design in the Pirkle laboratories. J. Chromatogr. A 666, 3–26.Google Scholar
  48. 48.
    Hyun, M. H. and Min, C. S. (1998) Chiral recognition mechnism for the resolution of enantiomers on a highly effective HPLC chiral stationary phase derived from (R)-4-hydroxyphenylglycine. Chirality 10(7), 592–599.Google Scholar
  49. 49.
    Lin, C.-E. and Lin, C.-H. (1994) Enantiomer separation of amino-acids on a chiral stationary-phase derived from 1-alanyl-disubstituted and pyrrolidinyl-disubstituted cyanuric chloride. J. Chromatogr. A 676, 303–309.Google Scholar
  50. 50.
    Gasparrini, F., Misiti, D., Pierini, M., and Villani, C. (1996) Enantioselective chromatography on brush-type chiral stationary phases containing totally synthetic selectors Theoretical aspects and practical applications. J. Chromatogr. A 724, 79–90.Google Scholar
  51. 51.
    Uray, G., Maier, N. M., Niederreiter, K. S., and Spitaler, M. M. (1998) Diphenylethanediamine derivatives as chiral selectors VIII. Influence of the second amido function on the high-performance liquid chromatographic enantioseparation characteristics of (N-3,5-dinitrobenzoyl)-diphenylethanediamine based chiral stationary phases. J. Chromatogr. A 799, 67–81.Google Scholar
  52. 52.
    Wolf, C., Spence, P. L., Pirkle, W. H., Derrico, E. M., Cavender, D. M., and Rozing, G. P. (1997) Enantioseparations by electrochromatography with packed capillaries. J. Chromatogr. A 782 (2), 175–179.Google Scholar
  53. 53.
    Wolf, C., Spence, P. L., Pirkle, W. H., Cavender, D. M., and Derrico, E. M. (2000) Investigation of capillary electrochromatography with brush-type chiral stationary phases. Electrophoresis 21, 917–924.PubMedGoogle Scholar
  54. 54.
    Thormann, W., Prost, F., and Prochazkova, A. (2000) Capillary electrophoresis with (R)-(−)-N-(3,5-dinitrobenzoyl)-alpha-phenylglycine as chiral selector for separation of albendazole sulfoxide enantiomers and their analysis in human plasma. J. Pharmaceut. Biomed. 27, 555–567.Google Scholar
  55. 55.
    Lämmerhofer, M. and Lindner, W. (1996) Quinine and quinidine derivatives as chiral selectors I. Brush type chiral stationary phases for high-performance liquid chromatography based on cinchonan carbamates and their application as chiral anion exchangers. J. Chromatogr. A 741, 33–48.Google Scholar
  56. 56.
    Lämmerhofer, M. and Lindner, W. (1998) High-efficiency chiral separations of N-derivatized amino acids by packed-capillary electrochromatography with a quinine-based chiral anion-exchange type stationary phase. J. Chromatogr. A 829, 115–125.Google Scholar
  57. 57.
    Tobler, E. M., Lämmerhofer, M., and Lindner W. (2000) Investigation of an enantioselective non-aqueous capillary electrochromatography system applied to the separation of chiral acids. J. Chromatogr. A 875, 341–352.PubMedGoogle Scholar
  58. 58.
    Lämmerhofer, M., Peters, E. C., Yu, C., Svec, F., Frechet, J. M. J., and Lindner, W. (2000) Chiral monolithic columns for enantioselective capillary electrochromatography prepared by copolymerization of a monomer with quinidine functionality 1. Optimization of polymerization conditions, porous properties, and chemistry of the stationary phase. Anal. Chem. 72, 4614–4622.PubMedGoogle Scholar
  59. 59.
    Lämmerhofer, M., Svec, F., and Frechet, J. M. J. (2000), Chiral monolithic columns for enantioselective capillary electrochromatography prepared by copolymerization of a monomer with quinidine functionality. 2. Effect of chromatographic conditions on the chiral separations. Anal. Chem. 72, 4623–4628.PubMedGoogle Scholar
  60. 60.
    Zarbl, E., Lämmerhofer, M., Woschek, A., et al. (2002) Strong versus weak chiral cation exchangers: Comparative evaluation for enantiomer separation of chiral bases by non-aqueous CEC. J. Sep. Sci. 25, 1269–1283.Google Scholar
  61. 61.
    Tobler, E., Lämmerhofer, M., Wuggenig, F., Hammerschmidt, F., and Lindner, W. (2002) Low-molecular-weight chiral cation exchangers: Novel chiral stationary phases and their application for enantioseparation of chiral bases by nonaqueous capillary electrochromatography. Electrophoresis 23, 462–476.PubMedGoogle Scholar
  62. 62.
    Hebenstreit, D., Bicker, W., Lämmerhofer, M., and Lindner, W. (2004) Novel enantioselective strong cation exchangers based on sulfodipeptide selectors: Evaluation for enantiorner separation of chiral bases by nonaqueous capillary electrochromatography. Electrophoresis 25, 277–289.PubMedGoogle Scholar
  63. 63.
    Pettersson, C. and Schill, G. (1981) Separation of enantiomeric amines by ion-pair chromatography, J. Chromatogr. 204, 179–183.PubMedGoogle Scholar
  64. 64.
    Salva, P. S., Hite, J. G., and Henkel, J. G. (1982) The preparative scale reverse phase HPLC separation of epimeric alkaloids using camphorsulfonic acid as an ion pairing reagent. J. Liq. Chromatogr. 5(2), 305–312.Google Scholar
  65. 65.
    Pettersson, C. and Karlsson, A. (1992) Separation of enantiomeric amines and acids using chiral ion-pair chromatography on porous graphitic carbon. Chirality 4, 323–332.Google Scholar
  66. 66.
    Pettersson, C. and Gioeli, C. (1993) Chiral separation of amines using reversed-phased ion-pair chromatography. Chirality 5(4), 241–245.Google Scholar
  67. 67.
    Petterson, C. and No, K. (1983) Chiral resolution of carboxylic and sulfonic acids by ion-pair chromatography. J. Chromatogr. 282, 671–684.Google Scholar
  68. 68.
    Pettersson, C. (1984) Chromatographic separation of enantiomers of acids with quinine as chiral counter ion. J. Chromatogr. 316, 553–567.Google Scholar
  69. 69.
    Bjornsdottir, I., Hansen, S. H., and Terabe, S. (1996) Chiral separation in non-aqueous media by capillary electrophoresis using the ion-pair principle. J. Chromatogr. A 745, 37–44.Google Scholar
  70. 70.
    Stalcup, A. M. and Gahm, K. H. (1996) Quinine as a chiral additive in nonaqueous capillary zone electrophoresis. J. Microcol. Separ. 8(2), 145–150.Google Scholar
  71. 71.
    Piette, V., Lämmerhofer, M., Lindner, W., and Crommen, J. (1999) Enantiomeric separation of N-protected amino acids by non-aqueous capillary electrophoresis using quinine or tert-butyl carbamoylated quinine as chiral additive. Chirality 11, 622–630.PubMedGoogle Scholar
  72. 72.
    Terabe, S., Ichikawa, K. T., Otsuka, K., and Tsuchiya, A. (1984) Electrokinetic separations with micellar solutions and open-tubular capillaries. Anal. Chem. 56, 111–113.Google Scholar
  73. 73.
    Cammileri, P. (1997) Chiral surfactants in micellar electrokinetic capillary chromatography. Electrophoresis 18, 2322–2330.Google Scholar
  74. 74.
    Palmer, C. P. and Tanaka, N. (1997) Selectivity of polymeric and polymer-supported pseudo-stationary phases in micellar electrokinetic chromatography. J. Chromatogr. A 792, 105–124.Google Scholar
  75. 75.
    Otsuka, K. and Terabe, S. (2000) Enantiomer separation of drugs by micellar electrokinetic chromatography using chiral surfactants. J. Chromatogr. A 875, 163–178.PubMedGoogle Scholar
  76. 76.
    Shamsi, S. A., and Warner, I. M. (1997) Monomeric and polymeric chiral surfactants as pseudo-stationary phases for chiral separations. Electrophoresis 18, 853–872.PubMedGoogle Scholar
  77. 77.
    Davankov, V. A. and Rogozhin, S. V. (1971) Ligand chromatography as a novel method for the investigation of mixed complexes: stereoselective effects in α-amino acid copper(II) complexes. J. Chromatogr. 60, 280–283.PubMedGoogle Scholar
  78. 78.
    Gübitz, G., Jellenz, W., Löffler, G., and Santi, W. (1979) Chemically bonded chiral stationary phases for the separation of racemates by HPLC. J. High Resol. Chromatogr. Chromatogr. Commun. 2, 145–146.Google Scholar
  79. 79.
    Gübitz, G., Jellenz, W., and Santi, W. (1981) Separation of the optical isomers of amino acids by ligand-exchange chromatography using chemically bonded phases. J. Chromatogr. 203, 377–384.Google Scholar
  80. 80.
    Gübitz, G., Juffmann, W., and Jellenz, W. (1982) Direct separation of amino acid enantiomers by high performance ligand-exchange chromatography on chemically bonded chiral phases. Chromatographia 16, 103–106.Google Scholar
  81. 81.
    Gübitz, G. (1986) Direct separation of enantiomers by high performance ligand-exchange chromatography on chemically bonded chiral phases. J. Liq. Chromatogr. 9, 519–535.Google Scholar
  82. 82.
    Brückner, H. (1987) Enantiomeric resolution of N-methyl-α-amino acids by ligand-exchange chromatography. Chromatographia 24, 725–738.Google Scholar
  83. 83.
    Gübitz, G. and Mihellyes, S. (1984) Direct separation of 2-hydroxy acids enantiomers by high-performance liquid chromatography on chemically bonded chiral phases. Chromatographia 19, 257–259.Google Scholar
  84. 84.
    Gübitz, G. and Juffmann, F. (1987) Resolution of the enantiomers of thyroid hormones by high performance ligand-exchange chromatography using a chemically bonded chiral stationary phase. J. Chromatogr. 404, 391–393.PubMedGoogle Scholar
  85. 85.
    Davankov, V. A. (1988) in Ligand Exchange Chromatography (Davankov, V. A., Navratil, J. D., and Walton, H. F., eds.). CRC Press, Boca Raton, FL, pp. 67–175.Google Scholar
  86. 86.
    Davankov, V. A. (1994) Chiral selectors with chelating properties in liquid chromatography: fundamental reflections and selective review of recent developments. J. Chromatogr. A 666, 55–76.Google Scholar
  87. 87.
    Kurganov, A. (2001) Chiral chromatographic separations based on ligand exchange. J. Chromatogr. A 906, 51–71.PubMedGoogle Scholar
  88. 88.
    Galaverna, G., Pantó, F., Dossena, A., Marchelli, R., and Bigi, F. (1985) Chiral separation of unmodified alpha-hydroxy acids by ligand exchange HPLC using chiral copper(II) complexes of (S)-phenylalaninamide as additives to the eluent. Chirality 7, 331–336.Google Scholar
  89. 89.
    Marchelli, R., Corradini, R., Bertuzzi, T., et al. (1996) Chiral discrimination by ligand-exchange chromatography: A comparison between phenylalaninamide-based stationary and mobile phases. Chirality 8, 452–461.Google Scholar
  90. 90.
    Gübitz, G., Mihellyes, S., Kobinger, G., and Wutte, A. (1994) New chemically bonded chiral ligand-exchange chromatographic stationary phases. J. Chromatogr. A 666, 91–97.Google Scholar
  91. 91.
    Wachsmann, M. and Brückner, H. (1998) Ligand-exchange chromatographic separation of DL-amino acids on aminopropylsilica-bonded chiral s-triazines. Chromatographia 47, 637–642.Google Scholar
  92. 92.
    Davankov, V. A., Bochkov, A. S., Kurganov, A. A., Roumeliotis, P., and Unger, K. K. (1980) Dealing with the ligand-exchange chromatography Separation of unmodified alpha-amino-acid enantiomers by reverse phase HPLC. Chromatographia 13, 677–685.Google Scholar
  93. 93.
    Remelli, M., Fornasari, P., Dondi, F., and Pulidori, F. (1993) Dynamic Column-coating procedure for chiral ligand-exchange chromatography. Chromatographia 37, 23–30.Google Scholar
  94. 94.
    Yamazaki, S., Takeuchi, T., and Tanimura, T. (1989) Direct enantiomeric separation of norephedrine and its analogs by high-performance liquid-chromatography. J. Liq. Chromatogr. 12, 2239–2248.Google Scholar
  95. 95.
    Ôi, N., Kitahara, H., and Aoki F. (1993) Enantiomer separation by high-performance liquid-chromatography with copper(II) complexes of Schiff-Bases as chiral stationary phases. J. Chromatogr. 631, 177–182.Google Scholar
  96. 96.
    Ôi, N., Kitahara, H., and Kira, R. (1992) Direct separation of enantiomers by high-performance liquid-chromatography on a new chiral ligand-exchange phase. J. Chromatogr. 592, 291–296.Google Scholar
  97. 97.
    Wan, Q. H., Shaw, P. N., Davies, M. C., and Barrett, D. A. (1997) Role of alkyl and aryl substituents in chiral ligand exchange chromatography of amino acids study using porous graphitic carbon coated with N-substituted-l-proline selectors. J. Chromatogr. A 786, 249–257.Google Scholar
  98. 98.
    Gil-Av, E., Tishbee, A., and Hare, P. E. (1980) Resolution of underivatized amino-acids by reversed-phase chromatography. J. Am. Chem. Soc. 102, 5115–5117.Google Scholar
  99. 99.
    Galaverna, G., Pantó, F., Dossena, A., Marchelli, R., and Bigi, F. (1985) Chiral separation of unmodified alpha-hydroxy acids by ligand exchange HPLC using chiral copper(II) complexes of (S)-phenylalaninamide as additives to the eluent. Chirality 7, 331–336.Google Scholar
  100. 100.
    Günther, K., Martens, J., and Schickedanz, M. (1984) Thin-layer chromatographic enantiomeric resolution via ligand exchange. Angew. Chem. Int. Ed. Engl. 23, 506.Google Scholar
  101. 101.
    Schmid, M. G., Grobuschek, N., Lecnik, O. and Gübitz, G. (2001) Chiral ligand-exchange capillary electrophoresis. J. Biochem. Biophys. Method 48, 143–154.Google Scholar
  102. 102.
    Schmid, M. G., Grobuschek, N., Tuscher, C., et al. (2000) Chiral separation of amino acids by ligand-exchange capillary electrochromatography using continuous beds. Electrophoresis 21, 3141–3144.PubMedGoogle Scholar
  103. 103.
    Schmid, M. G., Grobuschek, N., Lecnik, O., Gübitz, G., Végvári, Á., and Hjertén S. (2001) Enantioseparation of hydroxy acids on easy-to-prepare continuous beds for capillary electrochromatography. Electrophoresis 22, 2616–2619.PubMedGoogle Scholar
  104. 104.
    Chen, Z. and Hobo, T. (2001) Chemically l-prolinamide-modified monolithic silica column for enantiomeric separation of dansyl amino acids and hydroxy acids by capillary electrochromatography and-high performance liquid chromatography. Electrophoresis 22 (15), 3339–3346.PubMedGoogle Scholar
  105. 105.
    Schurig, V. (1977) Resolution of a chiral olefin by complexation chromatography on an optically active Rhodium(I) complex. Angew. Chem Int. Ed. Engl. 16, 110.Google Scholar
  106. 106.
    Schurig, V., Burkle, W., Hintzer, K., and Weber, R. (1989) Evaluation of nickel(II) bis(alpha-(heptaf-luorobutanoyl)-terpeneketonates) as chiral stationary phases for the enantiomer separation of alkyl-substituted cyclic ethers by complexation gas-chromatography. J. Chromatogr. 475, 23–44.Google Scholar
  107. 107.
    Schurig, V., Schmalzing, D., and Schleimer, M. (1991) Enantiomer separation on immobilized Chirasil-Metal and Chirasil-Dex by gas-chromatography and supercritical fluid chromatography. Angew. Chem. Int. Ed. Engl. 30, 987–989.Google Scholar
  108. 108.
    Jung, M., Schmalzing, D., and Schurig, V. (1991) Theoretical approach to the gas-chromatographic separation of enantiomers on dissolved cyclodextrin derivatives. J. Chromatogr. 552, 43–57.Google Scholar
  109. 109.
    Armstrong, D. W. and DeMond, W. (1984) Cyclodextrin bonded phases for the liquid-chromatographic separation of optical, geometrical, and structural isomers. J. Chromatogr. Sci. 22, 411–415.Google Scholar
  110. 110.
    Bressolle, F., Audran, M., Pham, T. N., and Vallon, J. J. (1996) Cyclodextrins and enantiomeric separations of drugs by liquid chromatography and capillary electrophoresis: basic principles and new developments. J. Chromatogr. B 687, 303–336.Google Scholar
  111. 111.
    Schurig, V. (2001) Separation of enantiomers by gas chromatography. J. Chromatogr. A 906, 275–299.PubMedGoogle Scholar
  112. 112.
    König, W. A., Lutz, S., Mischnick-Lubbecke, P., Brassat, B., and Wenz, G. (1988) Cyclodextrins as chiral stationary phases in capillary gas-chromatography. Pentylated alpha-cyclodextrin. J. Chromatogr. 447, 193–197.Google Scholar
  113. 113.
    Armstrong, D. W., Li, W. Y., and Pitha, J. (1990) Reversing enantioselectivity in capillary gas-chromatography with polar and nonpolar cyclodextrin derivative phases. Anal. Chem. 62, 214–217.PubMedGoogle Scholar
  114. 114.
    Vigh, G. and Sokolowski, A. D. (1997) Capillary electrophoretic separations of enantiomers using cyclodextrin-containing background electrolytes. Electrophoresis 18, 2305–2310.PubMedGoogle Scholar
  115. 115.
    Koppenhoefer, B., Zhu, X., Jakob, A., Wuerthner, S., Lin, B. (2000) Separation of drug enantiomers by capillary electrophoresis in the presence of neutral cyclodextrins. J. Chromatogr. A 875, 135–161.PubMedGoogle Scholar
  116. 116.
    Chankvetadze, B. (1997) Separation selectivity in chiral capillary electrophoresis with charged selectors. J. Chromatogr. A 792, 269–295.Google Scholar
  117. 117.
    De Boer, T., De Zeeuw, R. A., De Jong, G. J., and Ensing, K. (2000) Recent innovations in the use of charged cyclodextrins in capillary electrophoresis for chiral separations in pharmaceutical analysis. Electrophoresis 21(15), 3220–3239PubMedGoogle Scholar
  118. 118.
    Tanaka, Y. and Tarabe, S. (1997) Enantiomer separation of acidic racemates by capillary electrophoresis using cationic and amphoteric beta-cyclodextrins as chiral selectors. J. Chromatogr. A 781, 151–160.PubMedGoogle Scholar
  119. 119.
    Cucinotta, V., Giuffrida, A., Grasso, G., Maccarrone, G., and Vecchio, G. (2001) Hemispherodextrins, a new class of cyclodextrin derivatives, in capillary electrophoresis. J. Chromatogr. A 916, 61–64.PubMedGoogle Scholar
  120. 120.
    Cucinotta, V., Giuffrida, A., Grasso, G., Maccarrone, G., Mazzaglia, A., and Vecchio, G. (2001) New cyclodextrin derivatives as chiral selectors in capillary electrophoresis. Fres. J. Analyt. Chem. 370, 363–366.Google Scholar
  121. 121.
    Cucinotta, V., Giuffrida, A., Grasso, G., Maccarrone, G., and Messina, M. (2002) Simultaneous separation of different enantiomeric pairs in capillary electrophoresis by mixing different hemispherodextrins, a very versatile class of receptors. J. Chromatogr. A 979, 137–145.PubMedGoogle Scholar
  122. 122.
    Lurie, I. S. (1997) Separation selectivity in chiral and achiral capillary electrophoresis with mixed cyclodextrins. J. Chromatogr. A 792, 297–307.Google Scholar
  123. 123.
    Fillet, M., Hubert, P., and Crommen, J. (2000) Enantiomeric separations of drugs using mixtures of charged and neutral cyclodextrins. J. Chromatogr. A 875, 123–134.PubMedGoogle Scholar
  124. 124.
    Terabe, S., Miyashita, Y., Shibata, O., et al. (1990) Separation of highly hydrophobic compounds by cyclodextrin-modified micellar electrokinetic chromatography. J. Chromatogr. 516, 23–31.Google Scholar
  125. 125.
    Chankvetadze, B., Schulte, G., and Blaschke, G. (1997) Nature and design of enantiomer migration order in chiral capillary electrophoresis. Enantiomer 2, 157–179.Google Scholar
  126. 126.
    Huang, W. X., Xu, H., Fazio, S. D., and Vivilecchia R. V. (2000) Enhancement of chiral recognition by formation of a sandwiched complex in capillary electrophoresis. J. Chromatogr. A 875, 361–369.PubMedGoogle Scholar
  127. 127.
    Armstrong, D. W., Chang, L. W., and Chang, S. S. C. (1998) Mechanism of capillary electrophoresis enantioseparations using a combination of an achiral crown-ether plus cyclodextrins. J. Chromatogr. A 793, 115–134.PubMedGoogle Scholar
  128. 128.
    Bunke, A., Jira, T., and Gübitz, G. (1995) Chiral Separation of cyclodrine by means of capillary electrophoresis. Pharmazie 50, 570–571.Google Scholar
  129. 129.
    Jira, T., Bunke, A., and Karbaum, A. (1998) Use of chiral and achiral ion-pairing reagents in combination with cyclodextrins in capillary electrophoresis. J. Chromatogr. A 798, 281–288.Google Scholar
  130. 130.
    Schmid, M. G., Wirnsberger, K., Jira, T., Bunke, A., and Gübitz, G. (1997) Capillary electrophoretic chiral resolution of vicinal diols by complexation with borate and cyclodextrin—Comparative studies on different cyclodextrin derivatives. Chirality 9, 153–156.Google Scholar
  131. 131.
    Stefansson, M. and Novotny, M. (1993) Electrophoretic resolution of monosaccharide enantiomers in borate oligosaccharide complexation media. J. Am. Chem. Soc. 115, 11,573–11,580.Google Scholar
  132. 132.
    Jira, T., Bunke, A., Schmid, M. G., and Gübitz, G. (1997) Chiral resolution of diols by capillary electrophoresis using borate-cyclodextrin complexation. J. Chromatogr. A 761, 269–276.Google Scholar
  133. 133.
    Mayer, S. and Schurig, V. (1993) Enantiomer separation by electrochromatography in open tubular columns coated with Chirasil. Dex. J. Liq. Chromatogr. 16, 915–931.Google Scholar
  134. 134.
    Mayer, S. and Schurig, V. (1994) Enantiomer separation using mobile and immobile cyclodextrin derivatives with electromigration. Electrophoresis 15, 835–841.PubMedGoogle Scholar
  135. 135.
    Schurig, V., Jung, M., Mayer, S., Fluck, M., Negura, S., and Jakubetz, H. (1995) Unified enantioselective capillary chromatography on a Chirasil-DEX station ary phas. Advantages of column miniaturization. J. Chromatogr. A 694, 119–128.PubMedGoogle Scholar
  136. 136.
    Wistuba, D., Czesla, H., Roeder, M., and Schurig, V. (1998) Enantiomer separation by pressure-supported electrochromatography using capillaries packed with a permethyl-beta-cyclodextrin stationary-phase. J. Chromatogr. A 815, 183–188.PubMedGoogle Scholar
  137. 137.
    Wistuba, D. and Schurig, V. (1999) Enantiomer separation by pressure-supported electrochromatoraphy using capillaries packed with Chirasil-Dex polymercoated silica. Electrophoresis 20, 2779–2785.PubMedGoogle Scholar
  138. 138.
    Schurig, V. and Wistuba, D. (1999). Recent innovations in enantiomer separation by electrochromatography utilizing modified cyclodextrins as stationary phases. Electrophoresis 20, 2313–2328.PubMedGoogle Scholar
  139. 139.
    Koide T. and Ueno, K. (1998) Enantiomeric separations of cationic and neutral compounds by capillary electrochromatography with charged polyacrylamide gels incorporating chiral selectors. Anal. Sci. 14, 1021–1023.Google Scholar
  140. 140.
    Végvári, Á., Földesi, A., Hetényi, C., et al. (2000) A new easy-to-prepare homogeneous continuous electrochromatographic bed for enantiomer recognition. Electrophoresis 21, 3116–3125.PubMedGoogle Scholar
  141. 141.
    Wistuba, D. and Schurig, V. (2000) Enantiomer separation by capillary electrochromatography on a cyclodextrin-modified monolith. Electrophoresis 21, 3152–3159.PubMedGoogle Scholar
  142. 142.
    Kang, J. W., Wistuba, D., and Schurig, V. (2002) A silica monolithic column prepared by the sol-gel process for enantiomeric separation by capillary electrochromatography. Electrophoresis 23, 1116–1120.PubMedGoogle Scholar
  143. 143.
    Chen, Z. L., Ozawa, H., Uchiyama, K., and Hobo, T., (2003) Cyclodextrin-modified monolithic columns for resolving dansyl amino acid enantiomers and positional isomers by capillary electrochromatography. Electrophoresis 24, 2550–2558.PubMedGoogle Scholar
  144. 144.
    Gong, Y. and Lee, H. K. (2003) Application of cyclam-capped beta-cyclodextrin-bonded silica particles as a chiral, stationary phase in capillary electrochromatography for enantiomeric separations. Anal. Chem. 75, 1348–1354.PubMedGoogle Scholar
  145. 145.
    Zhang, M. Q. and El Rassi, Z. (2000) Enantiomeric separation by capillary electrochromatography—Chiral separation of dansyl amino acids and phenoxy acid herbicides on sulfonated silica having surfacebound hydroxypropyl-beta-cyclodextrin. Electrophoresis 21, 3135–3140.PubMedGoogle Scholar
  146. 146.
    Hesse, G. and Hagel, R. (1973) A complete separation of a racemic mixture by elution chromatography on cellulose triacetate. Chromatographia 6, 277–280.Google Scholar
  147. 147.
    Okamoto, Y., Hatada, K., Kawashima, M., and Yamamoto, K. (1984) Chromatographic resolution—Useful chiral packing materials for high-performance liquid-chromatographic resolution—cellulose triacetate and tribenzoate coated on macroporous silica-gel. Chem. Lett. 5, 739–742.Google Scholar
  148. 148.
    Wainer, I. W. and Alembik, M. C. (1986) Resolution of enantiomeric amides on a cellulose-based chiral statinary phase—steric and electronic effects. J. Chromatogr. 358, 85–93.PubMedGoogle Scholar
  149. 149.
    Tachibana, K. and Ohnishi, A. (2001). Reversedphase liquid chromatographic separations of enantiomers on polysaccharide type chiral stationary phases. J. Chromatogr. A 906, 127–154.PubMedGoogle Scholar
  150. 150.
    Okamoto, Y. and Kaida, Y. (1994) Resolution by high-performance liquid-chromatography using polysaccharide carbamates and benzoates as chiral stationary phases. J. Chromatogr. A 666, 403–419.Google Scholar
  151. 151.
    Oguni, K., Oda, H., and Ichida, A. (1995) Development of chiral stationary phases consisting of polysaccharide derivatives. J. Chromatogr. A 694, 91–100.Google Scholar
  152. 152.
    Yashima, E. and Okamoto, Y. (1995) Chiral discrimination on polysaccharide derivatives. Bull. Chem. Soc. Jpn. 68, 3289–3307.Google Scholar
  153. 153.
    Okamoto, Y. and Yashima, E. (1998) Polysaccharide derivatives for chromatographic separation of enantiomers. Angew. Chem. Int. Ed. 37, 1020–1043.Google Scholar
  154. 154.
    Yashima, E. (2001) Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation. J. Chromatogr. A 906, 105–125.PubMedGoogle Scholar
  155. 155.
    Okamoto, Y., Aburatani, R., Hatano, K., and Hatada, K. (1988) Optical resolution of racemic drugs by chiral HPLC on cellulose and amylose tris(phenylcarbamate) derivatives. J. Liq. Chromatogr. 11, 2147–2163.Google Scholar
  156. 156.
    Senso, A., Oliveros, L., and Minguillón, C. (1999) Chitosan derivatives as chiral selectors bonded on allyl silica gel: preparation, characterisation and study of the resulting high-performance liquid chromatography chiral stationary phases. J. Chromatogr. A 839, 15–21.Google Scholar
  157. 157.
    Cass, Q. B., Bassi, A. I., and Matlin, S. A. (1996) Chiral discrimination by HPLC on aryl carbamate derivatives of chitin coated onto microporous aminopropyl silica. Chirality 8, 131–135.Google Scholar
  158. 158.
    Felix, G. and Zhang, T. (1993) Chiral Packing materials for high-performance liquid-chromatographic resolution of enantiomers based on substituted branched polysaccharides coated on silica-gel. J. Chromatogr. 639, 141–149.PubMedGoogle Scholar
  159. 159.
    Girod, M., Chankvetadze, B., and Blaschke, G., (2000) Enantioseparations in non-aqueous capillary electrochromatography using polysaccharide type chiral stationary phases. J. Chromatogr. A 887, 439–455.PubMedGoogle Scholar
  160. 160.
    Kawamura, K., Otsuka, K., and Terabe, S. (2001) Capillary electrochromatographic enantioseparations using a packed capillary with a 3 μm OD-type chiral packing. J. Chromatogr. A 924, 251–257.PubMedGoogle Scholar
  161. 161.
    Chankvetadze, L., Kartozia, I., Yamamoto, C., Chankvetadze, B., Blaschke, G., and Okamoto, Y. (2002) Enantioseparations in capillary liquid chromatography and capillary electrochromatography using amylose tris(3,5-dimethylphenylcarbamate) in combination with aqueous organic mobile phase. J. Sep. Sci. 25, 653–660.Google Scholar
  162. 162.
    Chen, X. M., Zou, H. F., Ye, M. L., and Zhang, Z. Z., (2002) Separation of enantiomers by nanoliquid chromatography and capillary electrochromatography using a bonded cellulose trisphenylcarbamate stationary phase. Electrophoresis 23, 1246–1254.PubMedGoogle Scholar
  163. 163.
    Chen, X. M., Jin, W. H., Qin, F., Liu, Y. Q., Zou, H. F., and Guo, B. C. (2003) Capillary electrochromatographic separation of enantiomers on chemically bonded type of cellulose derivative chiral stationary phases with a positively charged spacer. Electrophoresis 24, 2559–2566.PubMedGoogle Scholar
  164. 164.
    Nishi, H. (1997) Enantioselectivity in chiral capillary electrophoresis with polysaccharides. J. Chromatogr. A 792, 327–347.PubMedGoogle Scholar
  165. 165.
    Soini, H., Stefansson, M., Riekkola, M.L. and Novotny, M. V. (1994) Maltooligosaccharides as chiral selectors for the separation of pharmaceuticals by capillary electrophoresis. Anal. Chem. 66, 3477–3484.PubMedGoogle Scholar
  166. 166.
    Chankvetadze, B., Saito, M., Yashima, E., and Okamoto, Y. (1997) Enantioseparation using selected polysaccharides as chiral buffer additives in capillary electrophoresis. J. Chromatogr. A 773, 331–338.PubMedGoogle Scholar
  167. 167.
    Nakamura, H., Sano, A., and Sumii, H. (1998) Chiral separation of (R,S)-1,1′-binaphthyl-2,2′-diyl hydrogenphosphate by capillary electrophoresis using monosaccharides as chiral selectors. Anal. Sci. 14, 375–378.Google Scholar
  168. 168.
    Nishi, H., Nakamura, K., Nakai, H., and Sato, T. (1996) Enantiomer separation by capillary electrophoresis using DEAE-dextran and aminoglycosidic antibiotics. Chromatographia 43, 426–430.Google Scholar
  169. 169.
    Armstrong, D. W., Rundlett, K. L., and Chen, J. R. (1994) Evaluation of the macrocyclic antibiotic vancomycin as a chiral selector for capillary electrophoresis. Chirality 6, 496–509.PubMedGoogle Scholar
  170. 170.
    Armstrong, D. W., Tang, Y. B., Chen, S. S., Zhou, Y. W., Bagwill, C., and Chen, J. R. (1994) Macrocyclic antibiotics as a new class of chiral selectors for liquid-chromatography, Anal. Chem. 66, 1473–1484.Google Scholar
  171. 171.
    Armstrong, D. W., Liu, Y., and Ekborg-Ott, K. H. (1995) Covalently bonded teicoplanin chiral stationary-phase for HPLC enantioseparations. Chirality 7, 474–497.Google Scholar
  172. 172.
    Ekborg-Ott, K. H., Liu, Y., and Armstrong, D. W. (1998) Highly enantioselective HPLC separations using the covalently bonded macrocyclic antibiotic, ristocetin A, chiral stationary phase. Chirality 10, 434–483.PubMedGoogle Scholar
  173. 173.
    Ekborg-Ott, K. H., Zientara, G. A., Schneiderheinze, J. M., Gahm, K., and Armstrong, D. W. (1999) Avoparcin, a new macrocyclic antibiotic chiral run buffer additive for capillary electrophoresis. Electrophoresis 20, 2438–2457.PubMedGoogle Scholar
  174. 174.
    Ward, T. J. and Farris, A. B., III. (2001) Chiral separations using the macrocyclic antibiotics: a review. J. Chromatogr. A 906, 73–89.PubMedGoogle Scholar
  175. 175.
    Armstrong, D. W. and Zhou, Y. W. (1994) Use of a macrocyclic antibiotic as a chiral selector for the enantiomeric separation by TLC. J. Liq. Chromatogr. 17, 1695–1707.Google Scholar
  176. 176.
    Bhushan, R. and Parshad, V. (1996) Thin-layer chromatographic-separation of enantiomeric dansylamino acids using a macrocyclic antibiotic as a chiral selector. J. Chromatogr. A 736, 235–238.Google Scholar
  177. 177.
    Ward, T. J. and Oswald, T. M. (1997) Enantioselectivity in capillary electrophoresis using the macrocyclic antibiotics. J. Chromatogr. A 792, 309–325.PubMedGoogle Scholar
  178. 178.
    Desiderio, C. and Fanali, S. (1998) Chiral Analysis by capillary electrophoresis using antibiotics as chiral selector. J. Chromatogr. A 807, 37–56.PubMedGoogle Scholar
  179. 179.
    Armstrong, D. W. and Nair, U. B. (1997) Capillary electrophoretic enantioseparations using macrocyclic antibiotics as chiral selectors. Electrophoresis 18, 2331–2342.PubMedGoogle Scholar
  180. 180.
    Dermaux, A., Lynen, P., and Sandra, P. (1998) Chiral capillary electrochromatography on a vancomycin stationary phase. J. High Resol. Chromatogr. 21 (10), 575–576.Google Scholar
  181. 181.
    Wikström, H., Svensson, L. A., Torstensson, A., and Owens, P. K. (2000) Immobilisation and evaluation of a vancomycin chiral stationary phase for capillary electrochromatography. J. Chromatogr. A 869, 395–409.PubMedGoogle Scholar
  182. 182.
    Carter-Finch, A. S. and Smith, N. W. (1999) Enantiomeric separations by capillary electrochromatography using a macrocyclic antibiotic chiral stationary phase. J. Chromatogr. A 848, 375–385.PubMedGoogle Scholar
  183. 183.
    Karlsson, C., Wikström, H., Armstrong, D. W., and Owens, P. K. (2000) Enantioselective reversed-phase and non-aqueous capillary electrochromatography using a teicoplanin chiral stationary phase. J. Chromatogr. A 897, 349–363.PubMedGoogle Scholar
  184. 184.
    Karlsson, C., Karlsson, K., Armstrong, D. W., and Owens, P.K. (2000) Evaluation of a vancomycin chiral stationary phase in capillary electrochromatography using polar organic and reversed-phase modes. Anal. Chem. 72, 4394–4401.PubMedGoogle Scholar
  185. 185.
    Desiderio, C., Aturki, Z., and Fanali, S., (2001) Use of vancomycin silica stationary phase in packed capillary electrochromatography I. Enantiomer separation of basic compounds. Electrophoresis 22, 535–543.PubMedGoogle Scholar
  186. 186.
    Grobuschek, N., Schmid, M. G., Koidl, J., and Gübitz G. (2002) Enantioseparation of amino acids and drugs by CEC, pressure supported CEC and micro-HPLC using a teicoplanin aglycone stationary phase. J. Sep. Sci. 25, 1297–1302.Google Scholar
  187. 187.
    Desiderio, C., Polcaro, C. M., Padiglioni, P., and Fanali, S. (1997) Enantiomeric separation of acidic herbicides by capillary electrophoresis using vancomycin as chiral selector. J. Chromatogr. A 781, 503–513.Google Scholar
  188. 188.
    Kornysova, O., Surna, R., Snitka, V., Pyell, U., and Maruska, A. (2002) Polyrotaxane approach for synthesis of continuous beds for capillary electrochromatography. J. Chromatogr. A 971, 225–235.PubMedGoogle Scholar
  189. 189.
    Schmid, M. G., Koidl, J., Freigassner, C., et al. (2004) New particle-loaded monoliths for chiral capillary electrochromatographic separation. Electrophoresis 25, 3195–3203.PubMedGoogle Scholar
  190. 190.
    Berthod, A., Chen, X., Kullman, J. P., et al. (2000) Role of the carbohydrate moieties in chiral recognition on teicoplanin-based LC stationary phase. Anal. Chem. 72, 1767–1780.PubMedGoogle Scholar
  191. 191.
    Sousa, L. R., Sogah, G. D. Y., Hoffmann, D. H., and Cram, D. J. (1978) Host-guest complexation: Optical resolution of amine and amino ester salts by chromatography. J. Am. Chem. Soc. 100, 4569–4576.Google Scholar
  192. 192.
    Sogah, G. D. Y. and Cram, D. J. (1979) Host-guest complexation: Host covalently bound to polystyrene resin for chromatographic resolution of enantiomers of amino acids and ester salts. J. Am. Chem. Soc. 101, 3035–3042.Google Scholar
  193. 193.
    Shinbo, T., Nishimura, K., Sugiura, M., and Yamaguchi, T. (1987) Chromatographic-separation of racemic amino-acids by use of chiral crown ether-coated reversed-phase packings. J. Chromatogr. 405, 145–153.PubMedGoogle Scholar
  194. 194.
    Machida, Y., Nishi, H., Nakamura, K., Nakai, H., and Sato T. (1998) Enantiomer separation of amino compounds by a novel chiral stationary phase derived from crown ether. J. Chromatogr. A 805, 85–92.Google Scholar
  195. 195.
    Hyun, M. H., Jin, J. S., and Lee W. (1998) Liquid chromatographic resolution of racemic amino acids and their derivatives on a new chiral stationary phase based on crown ether. J. Chromatogr. A 822, 155–161.Google Scholar
  196. 196.
    Hyun, M. H., Jin, J. S., Koo, H. J., and Lee, W. (1999) Liquid chromatographic resolution of racemic amines and amino alcohols on a chiral stationary phase derived from crown ether. J. Chromatogr. A 837, 75–82.Google Scholar
  197. 197.
    Hyun, M. H., Han, S. C., Lipshutz, B. H., Shin, Y-J., and Welch, C. J. (2001) New chiral crown ether stationary phase for the liquid chromatographic resolution of α-amino acid enantiomers. J. Chromatogr. A 910, 359–365.PubMedGoogle Scholar
  198. 198.
    Steffeck, R. J., Zelechonok, Y. and Gahm, K. H. (2002) Enantioselective separation of racemic secondary amines on a chiral crown ether-based liquid chromatography stationary phase. J. Chromatogr. A 947, 301–305PubMedGoogle Scholar
  199. 199.
    Kuhn, R., Erni, F., Bereuter, T., and Häusler, J. (1992) Chiral recognition and nantiomeric resolution based on host guest complexation with crown ethers in capillary zone electrophoresis. Anal. Chem. 64, 2815–2820.Google Scholar
  200. 200.
    Höhne, E., Krauss, G.-J., and Gübitz, G. (1992) Capillary zone electrophoresis of the enantiomers of aminoalcohols based on host-guest complexation with a chiral crown-ether. J. High Resol. Chromatogr. 15, 698–700.Google Scholar
  201. 201.
    Kuhn, R., Riester, D., Fleckenstein, B., and Wiesmüller, K.-H. (1995) Evaluation of an optically-active crown-ether for the chiral separation of dipeptides and tripeptides. J. Chromatogr. A 716, 371–379.PubMedGoogle Scholar
  202. 202.
    Schmid, M. G. and Gübitz, G. (1995) Capillary zone electrophoretic separation of the enantiomers of dipeptides based on host-guest complexation with a chiral crown-ether. J. Chromatogr. A 709, 81–88.Google Scholar
  203. 203.
    Nishi, H., Nakamura, K., Nakai H., and Sato, T. (1997) Separation of enantiomers and isomers of amino-compounds by capillary electrophoresis and high-performance liquid-chromatography utilizing crown-ethers. J. Chromatogr. A 757, 225–235.Google Scholar
  204. 204.
    Mori, Y., Ueno, K., and Umeda, T. (1997) Enantiomeric separations of primary amino-compounds by nonaqueous capillary zone electrophoresis with a chiral crown-ether. J. Chromatogr. A 757, 328–332.Google Scholar
  205. 205.
    Wang, C. Y., Shang, Z. C., Mei, J. H., and Yu, Q. S. (2003) Synthesis of a new chiral receptor containing 1,7-diaza-12-crown-4 and its application in chiral separation. Synthet. Comm. 33, 3381–3386.Google Scholar
  206. 206.
    Koide, T. and Ueno, K. (2001) Enantiomeric separations of primary amino compounds by capillary electrochromatography with monolithic chiral stationary phases of chiral crown ether-bonded negatively charged polyacrylamide gels. J. Chromatogr. A 909, 305–315.PubMedGoogle Scholar
  207. 207.
    Huang, W. X., Xu, H., Fazio, S. D., and Vivilecchia, V. (2000) Enhancement of chiral recognition by formation of a sandwiched complex in capillary electrophoresis. J. Chromatogr. A 875, 361–369.PubMedGoogle Scholar
  208. 208.
    Armstrong, D. W., Chang, L. W., and Chang, S. S. C. (1998) Mechanisms of capillary electrophoresis enantioseparations using a combination of an achiral crown ether plus cyclodextrins. J. Chromatogr. A 793, 115–134.PubMedGoogle Scholar
  209. 209.
    Pfeiffer, J. and Schurig, V. (1999) Enantiomer separation of amino acid derivatives on a new polymeric chiral resorc[4]arene stationary phase by capillary gas chromatography. J. Chromatogr. A 840, 145–150.Google Scholar
  210. 210.
    Narumi, F., Iki, N., Suzuki, T., Onodera, T., and Miyano, S. (2000) Syntheses of chirally modified Thiacalix[4]arenes with enantiomeric amines and their application to chiral stationary phases for gas chromatography. Enantiomer 5, 83–93.PubMedGoogle Scholar
  211. 211.
    Peña, M. S., Zhang, Y. L., and Warner, I. M. (1997) Enantiomeric separations by use of calixarene electrokinetic chromatography. Anal. Chem. 69, 3239–3242.Google Scholar
  212. 212.
    Grady, T., Joyce, T., Smyth, M. R., Harris, S. J., and Diamond, D. (1998) Chiral resolution of the enantiomers of phenylglycinol using (S)-di-naphthylprolinol calix[4]arene by capillary electrophoresis and fluorescence spectroscopy. Anal. Commun. 35, 123–125.Google Scholar
  213. 213.
    Gasparrini, F., Misiti, D., Villani, C., Borchardt, A., Burger, M. T., and Still, W. C. (1995) Enantioselective recognition by a new chiral stationary-phase at receptorial level. J. Org. Chem. 60, 4314–4315.Google Scholar
  214. 214.
    Gasparrini, F., Misiti, D., Still, W. C., Villani, C., and Wennemers, H. (1997) Enantioselective and diastereoselective binding study of silica bound macrobicyclic receptors by HPLC. J. Org. Chem. 62, 8221–8224.PubMedGoogle Scholar
  215. 215.
    Pieters, R. J., Cuntze, J., Bonnet, M., and Diederich, F. (1995) Enantioselective recognition with C3-symmetric cage-like receptors in solution and on a stationary phase. J. Chem. Soc. Perkin. Trans. 2, 1891–1900.Google Scholar
  216. 216.
    Hu, K. J., Bradshaw, J. S., Dalley, N. K., Krakowiak, K. E., Wu, N. J., and Lee, M. L. (1999) Synthesis of a chiral macrocyclic dibenzodicyclohexanotetraamidecontaining stationary-phase for liquid-chromatography. J. Heterocycl. Chem. 36(2), 381–387.Google Scholar
  217. 217.
    Blaschke, G. (1986) Chromatographic resolution of chiral drugs on polyamides and cellulose triacetate. J. Liq. Chromatogr. 9, 341–368.Google Scholar
  218. 218.
    Mohammad, J., Li, Y. M., El-Ahmad, M. Nakazato, K., Pettersson, G., and Hjertén, S. (1993) Chiral recognition chromatography of β-blockers on continuous polymer beds with immobilized cellulase as enantioselective protein. Chirality 5, 464–470.Google Scholar
  219. 219.
    Koide, T. and Ueno, K. (2001) Enantiomeric separations of primary amino compounds by capillary electrochromatography with monolithic chiral stationary phases of chiral crown ether-bonded negatively charged polyacrylamide gels. J. Chromatogr. A 909, 305–315.PubMedGoogle Scholar
  220. 220.
    Peters, E. C., Lewandowski, K., Petro, M., Svec, F., and Frechet, J. M. J. (1998) Chiral electrochromatography with a moulded rigid monolithic capillary column. Anal. Commun. 35, 83–86.Google Scholar
  221. 221.
    Lämmerhofer, M., Svec, F., Fréchet, J. M. J., and Lindner, W., (2000) Chiral monolithic columns for enantioselective capillary electrochromatography prepared by copolymerization of a monomer with quinidine functionality. 2. Effect of chromatographic conditions on the chiral separations. Anal. Chem. 72, 4623–4628.PubMedGoogle Scholar
  222. 222.
    Sinner, F., and Buchmeiser, M. R. (2000) Ring-opening metathesis polymerization: access to a new class of functionalized, monolithic stationary phases for liquid chromatography. Angew. Chem. 112, 1491–1494.Google Scholar
  223. 223.
    Nakano, T. (2001) Optically active synthetic polymers as chiral stationary phases in HPLC. J. Chromatogr. A 906, 205–225.PubMedGoogle Scholar
  224. 224.
    Wulff, G. and Vesper, W. (1978) Preparation of chromatographic sorbents with chiral cavities for racemic resolution. J. Chromatogr. 167, 171–186.Google Scholar
  225. 225.
    Schweitz, L., Andersson, L. I., and Nilsson, S. (1997) Capillary electrochromatography with predetermined selectivity obtained through molecular imprinting. Anal. Chem. 69, 1179–1183.Google Scholar
  226. 226.
    Schweitz, L., Andersson, L. I., and Nilsson S. (1999) Molecular imprinting for chiral separations and drug screening purposes using monolithic stationary phases in CEC. Chromatographia 49, S93-S94.Google Scholar
  227. 227.
    Lin, J.-M., Nakagama, T., Wu, X. Z., Uchiyama, K. and Hobo, T. (1997) Capillary electrochromatographic separation of amino acid enantiomers with molecularly imprinted polymers as chiral recognition agents. Fresenius J. Anal. Chem. 357, 130–132.Google Scholar
  228. 228.
    Chirica, G. and Remcho, V. T. (1999) Silicate entrapped columns-new columns designed for capillary electrochromatography, Electrophoresis 20, 50–56.PubMedGoogle Scholar
  229. 229.
    Schweitz, L., Andersson, L. I., and Nilsson, S. (2001) Rapid electrochromatographic enantiomer separation on short molecularly imprinted monoliths. Analytica Chimica Acta 435, 43–47.Google Scholar
  230. 230.
    Schweitz, L., Andersson, L. I., and Nilsson S. (2002) Molecularly imprinted CEC sorbents: investigations into polymer preparation and electrolyte composition. Analyst 127, 22–28.PubMedGoogle Scholar
  231. 231.
    Schweitz, L., Spegel, P., and Nilsson, S. (2000) Molecularly imprinted microparticles for capillary electrochromatographic enantiomer separation of propranolol. Analyst 125, 1899–1901.PubMedGoogle Scholar
  232. 232.
    Spegel, P., Schweitz, L., and Nilsson, S. (2001) Molecularly imprinted microparticles for capillary electrochromatography: Studies on microparticle synthesis and electrolyte composition. Electrophoresis 22, 3833–3841.PubMedGoogle Scholar
  233. 233.
    Spegel, P., Schweitz, L., and Nilsson, S. (2003), Selectivity toward multiple predetermined targets in nanoparticle capillary electrochromatography, Anal. Chem. 75, 6608–6613.PubMedGoogle Scholar
  234. 234.
    Quaglia, M., De Lorenzi, E., Sulitzky, C., Massolini, G., and Sellergren, B. (2001) Surface initiated molecularly imprinted polymer films: a new approach in chiral capillary electrochromatography. Analysis 126, 1495–1498.Google Scholar
  235. 235.
    Quaglia, M., De Lorenzi, E., Sulitzky, C., Caccialanza, G., and Sellergren, B. (2003) Molecularly imprinted polymer films grafted from porous or nonporous silica: Novel affinity stationary phases in capillary electrochromatography. Electrophoresis 24, 952–957.PubMedGoogle Scholar
  236. 236.
    Sellegren, B. (2001) Imprinted chiral stationary phases in high-performance liquid chromatography. J. Chromatogr. A 906, 227–252.Google Scholar
  237. 237.
    Takeuchi, T. and Haginaka, J. (1999) Separation and sensing based on molecular recognition using molecularly imprinted polymers. J. Chromatogr. B. 728, 1–20.Google Scholar
  238. 238.
    Remcho, V. T. and Tan Z. J. (1999) MIPs as chromatographic stationary phases for molecular recognition. Anal. Chem. News Feat. 71, 248A-255A.Google Scholar
  239. 239.
    Haginaka, J. (2001) Protein based chiral stationary phases for HPLC enantioseparations. J. Chromatogr. A 906, 253–273.PubMedGoogle Scholar
  240. 240.
    Nilsson, S., Schweitz, L., and Petersson, M. (1997) 3 approaches to enantionmer separation of beta-adrenergic antagonists by capillary electrochromatography. Electrophoresis 18, 884–890.PubMedGoogle Scholar
  241. 241.
    Valtcheva, L., Mohammad, J., Pettersson, G., and Hjertén, S. (1993) Chiral separation of beta-blockers by high-performance capillary electrophoresis based on non-immobilized cellulase as enantioselective protein. J. Chromatogr. 638, 263–267.Google Scholar
  242. 242.
    Hedeland, M., Isaksson, R., and Pettersson, C. (1998) Cellobiohydrolase-I as a chiral additive in capillary electrophoresis and liquid-chromatography. J. Chromatogr. A 807, 297–305.Google Scholar
  243. 243.
    Tanaka, Y., Otsuka, K., and Terabe, S. (2000) Separation of enantiomers by capillary electrophoresis-mass spectrometry employing a partial filling technique with a chiral crown ether. J. Chromatogr. A 875, 323–330.PubMedGoogle Scholar
  244. 244.
    Schmid, M. G., Gübitz, G., and Kilár F. (1998), Stereoselective interaction of drug enantiomers with human serum transferrin in capillary zone electrophoresis II Electrophoresis 19 (2), 282–287.PubMedGoogle Scholar
  245. 245.
    Machtejevas, E. and Maruska, A. (2002) A new approach to human serum albumin chiral stationary phase synthesis and its use in capillary liquid chromatography and capillary electrochtomatography. J. Sep. Sci. 25, 1303–1309.Google Scholar
  246. 246.
    Wang, F., and Khaledi, M. G. (2000) Enantiomeric separations by non-aqueous capillary electrophoresis. J. Chromatogr. A 875, 277–293.PubMedGoogle Scholar
  247. 247.
    Snopek, J., Jelinek, I., and Smolkova-Keulemansova, E. (1988) The influence of cyclodextrins on the chiral resolution of ephedrine alkaloid enantiomers. J. Chromatogr. 438, 211–218.Google Scholar
  248. 248.
    Danková, M., Kaniansky, D., Fanali, S., and Iványi, F. (1999) Capillary zone electrophoresis separations of enantiomers present in complex ionic matrices with on-line isotachophoretic sample pretreatment. J. Chromatogr. A 838, 31–43.PubMedGoogle Scholar
  249. 249.
    Fanali, S., Desiderio, C., Ölvecka, E., Kaniansky, D., Vojtek, M., and Ferancová, A. (2000) Separation of enantiomers by on-line capillary isotachophoresis-capillary zone electrophoresis. J. High. Resolut. Chromatogr. 23(9), 531–538.Google Scholar
  250. 250.
    Toussaint, B., Hubert, P. H., Tiaden, U. R. van der Greef, J., and Crommen, J. (2000) Enantiomeric separation of clenbuterol by transient isotachophoresis-capillary zone electrophoresis-UV detection New optimization technique for transient isotachophoresis. J. Chromatogr. A 871, 173–180.PubMedGoogle Scholar
  251. 251.
    Kaniansky, D., Simunicova, E., Ölvecka, E., and Ferancova, A. (1999) Separations of enantiomers by preparative capillary isotachophoresis. Electrophoresis 20, 2786–2793.PubMedGoogle Scholar
  252. 252.
    Hoffmann, P., Wagner, H., Weber, G., Lanz, M., Caslavska, J., and Thormann, W. (1999) Separation and purification of methadone enantiomers by continuous-and interval-flow electrophoresis. Anal. Chem. 71, 1840–1850.Google Scholar
  253. 253.
    Glukhovsky, P. and Vigh, Gy. (1999) Analytical- and preparative- scale isoelectric focusing separation of enantiomers. Anal. Chem. 71, 3814–3820.Google Scholar
  254. 254.
    Fried, K. and Wainer, I. W. (1997) Column-switching techniques in the biomedical analysis of stereoisomeric drugs: why, how and when. J. Chromatogr. B 689, 91–104.Google Scholar
  255. 255.
    Ba, B., Eckert, G., and Leube, J. (1991) Use of dabsylation column switching and chiral separation for the determination of a renin inhibitor in rat marmoset and human plasma. J. Chromatogr. 572, 277–289.PubMedGoogle Scholar
  256. 256.
    Eto, S., Noda, H., and Noda, A. (1994) Simultaneous determination of antiepileptic drugs and their metabolites including chiral compounds via β-cyclodextrin inclusion complexes by a column-switching chromatographic technique. J. Chromatogr. B 658, 385–390.Google Scholar
  257. 257.
    Ducharme, J., Fernandez, C., Gimenez, F., and Farinotti, R. (1996) Critical issues in chiral drug analysis in biological fluids by High-Performance Liquid-Chromatography. J. Chromatogr. B 686, 65–75.Google Scholar
  258. 258.
    Bojarski, J. and Aboul-Enein, H. Y. (1997) Application of capillary electrophoresis for the analysis of chiral drugs in biological fluids. Electrophoresis 18, 965–969.PubMedGoogle Scholar
  259. 259.
    Zaugg, S. and Thormann, W. (2000) Enantioselective determination of drugs in body fluids by capillary electrophoresis. J. Chromatogr. A 875, 27–41.PubMedGoogle Scholar
  260. 260.
    Zhao, J. and Jorgenson, J. W. (1999) Application of synchronous cyclic capillary electrophoresis: Isotopic and chiral separations. J. Microcolumn Separations 11, 439–449.Google Scholar
  261. 261.
    Arce, L., Tena, M. T., Rios, A., and Valcárcel, M. (1998) Determination of trans-resveratrol and other polyphenols in wines by a continuous flow sample clean-up system followed by capillary electrophoresis separation. Anal. Chim. Acta 359, 27–38.Google Scholar
  262. 262.
    Fang, Z.-L., Liu, Z.-S., and Shen, Q. (1997) Combination of flow injection with capillary electrophoresis. Part I. The basic system. Anal. Chim. Acta 346, 135–143.Google Scholar
  263. 263.
    Kuban, P., Pirmohammadi, R., and Karlberg, B. (1999) Flow injection analysis-capillary electrophoresis system with hydrodynamic injection. Anal. Chim. Acta 378, 55–62.Google Scholar
  264. 264.
    Schwarz, M. A. and Hauser, P. C. (2001) Rapid chiral on-chip separation with simplified amperometric detection. J. Chromatogr. A 928, 225–232.PubMedGoogle Scholar
  265. 265.
    Ludwig, M., Kohler, F., and Belder, D. (2003) Highspeed chiral separations on a microchip with UV detection. Electrophoresis 24, 3233–3238.PubMedGoogle Scholar
  266. 266.
    Wang, H., Dai, Z. P., Wang, L., Bai, J. L., and Lin, B. C. (2002) Enantiomer separation of amino acids on microchip-based electrophoresis. Chinese J. Anal. Chem. 30, 665–669.Google Scholar
  267. 267.
    Rodriguez, I., Jin, L. J., and Li, S. F. Y. (2000) Highspeed chiral separations on microchip electrophoresis devices. Electrophoresis 21, 211–219.PubMedGoogle Scholar
  268. 268.
    Belder, D., Deege, A., Kohler, F., and Ludwig, M. (2002) Microchip electrophoresis for chiral separations. Electrophoresis 23, 3567–3573.PubMedGoogle Scholar
  269. 269.
    Skelley, A. M. and Mathies, R. A. (2003) Chiral separation of fluorescamine-labeled amino acids using microfabricated capillary electrophoresis devices for extraterrestrail exploration. J. Chromatogr. A 1021, 191–199.PubMedGoogle Scholar
  270. 270.
    Male, K. B. and Luong, J. H. T. (2003) Chiral analysis of neurotransmitters using cyclodextrin-modified capillary electrophores is equipped with microfabricated interdigitated. J. Chromatogr. A 1003, 167–178.PubMedGoogle Scholar
  271. 271.
    Liu, B. F., Ozaki, M., Utsumi, Y., Hattori, T., and Terabe, S. (2003) Chemilum inescence detection for a microchip capillary electrophoresis system fabricated in poly(dimethylsiloxane). Anal. Chem. 75, 36–41.PubMedGoogle Scholar
  272. 272.
    Ölvecka, E., Masar, M., Kaniansky, D., Johnck, M., and Stanislawski, B. (2001) Isotachophoresis separations of enantiomers on a planar chip with coupled separation channels. Electrophoresis 22, 3347–3353.PubMedGoogle Scholar
  273. 273.
    Belder, D. and Ludwig, M. (2003) Microchip electrophoresis for chiral separations. Electrophoresis 24, 2422–2430.PubMedGoogle Scholar
  274. 274.
    Hofstetter, O., Hofstetter, H., Wilchek, M., Schurig, V., and Green, B. S. (1998) Antibodies can recognize the chiral center of free α-amino acids. J. Am. Chem. Soc. 120, 3251–3252.Google Scholar
  275. 275.
    Hofstetter, O., Hofstetter, H., Wilchek, M., Schurig, V., and Green, B. S. (1999) Chiral discrimination using an immunosensor. Nat. Biotechnol. 17(4), 371–374.PubMedGoogle Scholar
  276. 276.
    Silvaieh, H., Schmid, M. G., Hofstetter, O., Schurig, V., and Gübitz G. (2002) Development of enantioselective chemiluminescence flow- and sequential-injection immunoassays for α-amino acids. J. Biochem Biophys. Meth. 53, 1–14.PubMedGoogle Scholar
  277. 277.
    Silvaieh, H., Wintersteiger, R., Schmid, M. G., Hofstetter, O., Schurig, V., and Gübitz, G. (2002) Enantioselective sequential injection chemiluminescence immuno assays for 3, 3′, 5-triiodothyronine (T3) and thyroxine (T4). Anal. Chim. Acta. 463, 5–14.Google Scholar
  278. 278.
    Hofstetter, O., Lindstrom, H., and Hofstetter, H. (2002) Direct resolution of enantiomers in high-performance immunoaffinity chromatography under isocratic conditions. Anal. Chem. 74, 2119–2125.PubMedGoogle Scholar
  279. 279.
    Hofstetter, O., Lindstrom, H., and Hofstetter, H. (2004) Effect of the mobile phase on antibody-based enantiomer separations of amino acids in HPLC. J. Chromatogr. A 1049, 85–95.PubMedGoogle Scholar
  280. 280.
    Zeleke, T. K., Zeleke, J. M. Hofstetter, H., and Hofstetter, O. (2005) Stereoselective antibodies to free a-hydroxy acids. J. Mol. Recogn. 18, 334–340.Google Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  1. 1.Institute of Pharmaceutical Sciences, Department of Pharmaceutical ChemistryKarl-Franzens UniversityGrazAustria

Personalised recommendations