Advertisement

Molecular Biotechnology

, Volume 31, Issue 3, pp 245–259 | Cite as

Recombinant protein production in yeasts

  • Danilo Porro
  • Michael Sauer
  • Paola Branduardi
  • Diethard Mattanovich
Review

Abstract

Recombinant DNA (rDNA) technologies (genetic, protein, and metabolic engineering) allow the production of a wide range of peptides, proteins, and biochemicals from naturally nonproducing cells. These technologies, now approx 25 yr old, have become one of the most important technologies developed in the twentieth century. Pharmaceutical products and industrial enzymes were the first biotech products on the world market made by means of rDNA. Despite important advances in rDNA applications in mammalian cells, yeasts still represent attractive hosts for the production of heterologous proteins. In this review we summarize advantages and limitations of the main and most promising yeast hosts.

Index Entries

Yeasts heterologous proteins expression industrial biotechnology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hitzeman, R. A., Hagie, F. E., Levine, H. L., Goeddel, D. V., Ammerer, G., and Hall, B. D. (1981) Expression of a human gene for interferon in yeast. Nature 293, 717–722.PubMedCrossRefGoogle Scholar
  2. 2.
    Reiser, J., Glumoff, V., Kalin, M., and Ochsner, U. (1990) Transfer and expression of heterologous genes in yeasts other than Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 43, 75–102.PubMedGoogle Scholar
  3. 3.
    Romanos, M. A., Scorer, C. A., and Clare, J. J. (1992) Foreign gene expression in yeast: a review. Yeast 8, 423–488.PubMedCrossRefGoogle Scholar
  4. 4.
    Sudbery, P. E., Gleeson, M. A., Veale, R. A., Ledeboer, A. M., and Zoetmulder, M. C. (1988) Hansenula polymorpha as a novel yeast system for the expression of heterologous genes. Biochem. Soc. Trans. 16, 1081–1083.PubMedGoogle Scholar
  5. 5.
    Thill, G., Davis, G., Stillman, C., et al. (1987) The methylotrophic yeast Pichia pastoris as a host for heterologous protein production. In: Proceedings of the Fifth International Symposium on Microbial Growth on C1 Compounds (van Verseveld, H. W., Duine, J. A., eds.) Nijhoff, Dordrecht, pp. 289–296.Google Scholar
  6. 6.
    Blondeau, K., Boze, H., Jung, G., Moulin, G., and Galzy, P. (1994) Physiological approach to heterologous human serum albumin production by Kluyveromyces lactis in chemostat culture. Yeast 10, 1297–1303.PubMedCrossRefGoogle Scholar
  7. 7.
    Gellissen, G. and Hollenberg, C. P. (1997) Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis—a review. Gene 190, 87–97.PubMedCrossRefGoogle Scholar
  8. 8.
    Muller, S., Sandal, T., Kamp-Hansen, P., and Dalboge, H. (1998) Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast 14, 1267–1283.PubMedCrossRefGoogle Scholar
  9. 9.
    Raymond, C. K., Bukowski, T., Holderman, S. D., Ching, A. F. T., Vanaja, E., and Stamm, M. R. (1998) Development of the methylotrophic yeast, Pichia methanolica, for the expression of the 65-kilodalton isoform of human glutamate decarboxylase. Yeast 14, 11–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Den Haan, R. and Van Zyl, W. H. (2001) Differential expression of the Trichoderma reesei beta-xylanase II (xyn2) gene in the xylose-fermenting yeast Pichia stipitis. Appl. Microbiol. Biotechnol. 57, 521–527.CrossRefGoogle Scholar
  11. 11.
    Hohenblum, H., Naschberger, S., Weik, R., Katinger, H. and Mattanovich, D. (2001) Production of recombinant human trypsinogen in Escherichia coli and Pichia pastoris. A comparison of expression systems. In: Recombinant Protein Production With Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology (Merten, O.-W., Mattanovich, D., Lang, C., et al., eds.) Kluwer Acad. Publ., Dortrecht, NL, pp. 339–346.Google Scholar
  12. 12.
    Romanos, M. (1995) Advances in the use of Pichia pastoris for high-level gene expression. Curr. Opin. Biotechnol. 6, 527–533.CrossRefGoogle Scholar
  13. 13.
    Ogawa, Y., Tatsumi, H., Murakami, S., et al. (1990) Secretion of Aspergillus oryzae alkaline protease in an osmophilic yeast, Zygosaccharomyces rouxii. Agric. Biol. Chem. 54, 2521–2529.PubMedGoogle Scholar
  14. 14.
    Brambilla, L., Ranzi, B. M., Vai, M., Alberghina, L., and Porro, D. (2000) Production of heterologous proteins from Zygosaccharomyces bailii. International patent application WO 00/41477.Google Scholar
  15. 15.
    Branduardi, P., Valli, M., Alberghina, L., and Porro, D. (2004) Process for expression and secretion of proteins by the non-conventional yeast Zygosaccharomyces bailii. International patent application WO 2004/042036.Google Scholar
  16. 16.
    Branduardi, P., Valli, M., Brambilla, L., Sauer, M., Alberghina, L., and Porro, D. (2004) The yeast Zygosaccharomyces bailii: a new host for heterologous protein production, secretion and for metabolic engineering applications. FEMS Yeast Res. 4, 493–504.PubMedCrossRefGoogle Scholar
  17. 17.
    Sakai, Y., Rogi, T., Takeuchi, R., Kato, N., and Tani, Y. (1995) Expression of Saccharomyces adenylate kinase gene in Candida boidinii under the regulation of its alcohol oxidase promoter. Appl. Microbiol. Biotechnol. 42, 860–864.PubMedCrossRefGoogle Scholar
  18. 18.
    Buckholz, R. G. and Gleeson, M. A. (1991) Yeast systems for the commercial production of heterologous proteins. Biotechnology (N Y) 9, 1067–1072.CrossRefGoogle Scholar
  19. 19.
    Sudbery, P. E. (1996) The expression of recombinant proteins in yeasts. Curr. Opin. Biotechnol. 7, 517–524.PubMedCrossRefGoogle Scholar
  20. 20.
    Gellissen, G. (2000) Heterologous protein production in methylotrophic yeasts. Appl. Microbiol. Biotechnol. 54, 741–750.PubMedCrossRefGoogle Scholar
  21. 21.
    Dominguez, A., Ferminan, E., Sanchez, M., et al. (1998) Non-conventional yeasts as hosts for heterologous protein production. Int. Microbiol. 1, 131–142.PubMedGoogle Scholar
  22. 22.
    Cereghino, J. L. and Cregg J. M. (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24, 45–66.PubMedCrossRefGoogle Scholar
  23. 23.
    Giga-Hama, Y. and Kumagai, H. (1999) Expression system for foreign genes using the fission yeast Schizosaccharomyces pombe. Biotechnol. Appl. Biochem. 30, 235–244.PubMedGoogle Scholar
  24. 24.
    Kurtzman, C. P. (2003) Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res. 4, 233–245.PubMedCrossRefGoogle Scholar
  25. 25.
    Makdesi, A. K. and Beuchat, L. R. (1996) Evaluation of media for enumerating heat-stressed, benzoate-resistant Zygosaccharomyces bailii. Int. J. Food Microbiol. 33, 169–181.PubMedCrossRefGoogle Scholar
  26. 26.
    Sousa, M. J., Miranda, L., Corte-Real, M., and Leao, C. (1996) Transport of acetic acid in Zygosaccharomyces bailii: effects of ethanol and their implications on the resistance of the yeast to acidic environments. Appl. Environ. Microbiol. 62, 3152–3157.PubMedGoogle Scholar
  27. 27.
    Wegener, G. H. and Harder, W. (1987) Methylotrophic yeasts—1986. Antonie van Leeuwenhoek 53, 29–36.CrossRefGoogle Scholar
  28. 28.
    Cregg, J. M., Cereghino, J. L., Shi, J., and Higgins, D. R. (2000) Recombinant protein expression in Pichia pastoris. Mol. Biotechnol. 16, 23–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Shen, S., Sulter, G., Jeffries, T. W., and Cregg, J. M. (1998) A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene 216, 93–102.PubMedCrossRefGoogle Scholar
  30. 30.
    Resina, D., Serrano, A., Valero, F., and Ferrer, P. (2004) Expression of a Rhizopus oryzae lipase in Pichia pastoris under control of the nitrogen source-regulated formaldehyde dehydrogenase promoter. J. Biotechnol. 109, 103–113.PubMedCrossRefGoogle Scholar
  31. 31.
    Waterham, H. R., Digan, M. E., Koutz, P. J., Lair, S. V., and Cregg, J. M. (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186, 37–44.PubMedCrossRefGoogle Scholar
  32. 32.
    Hollenberg, C. P. and Gellissen, G. (1997) Production of recombinant proteins by methylotrophic yeasts. Curr. Opin. Biotechnol. 8, 554–560.PubMedCrossRefGoogle Scholar
  33. 33.
    Burgers, P. M. and Percival, K. J. (1987) Transformation of yeast spheroplasts without cell fusion. Anal. Biochem. 163, 391–397.PubMedCrossRefGoogle Scholar
  34. 34.
    Gietz, R. D. and Woods, R. A. (2002) Transformation of yeast by the LiAc/ss carrier DNA/PEG. Meth. Enzymol. 350, 87–96.PubMedCrossRefGoogle Scholar
  35. 35.
    Sanchez, M., Iglesias, F. J., Santamaria, C., and Dominguez, A. (1993) Transformation of Kluyveromyces lactis by electroporation. Appl. Environm. Microbiol. 59, 2087–2092.Google Scholar
  36. 36.
    Hasslacher, M., Schall, M., Hayn, M., et al. (1997) High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts. Protein Expr. Purif. 11, 61–71.PubMedCrossRefGoogle Scholar
  37. 37.
    Clare, J. J., Rayment, F. B., Ballantine, S. P., Sreekrishna, K., and Romanos, M. A. (1991) High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Bio/Technology 9, 455–460.PubMedCrossRefGoogle Scholar
  38. 38.
    Richardson, P. T., Roberts, L. M., Gould, J. H., and Lord, J. M. (1988) The expression of functional ricin B-chain in Saccharomyces cerevisiae. Biochim Biophys Acta 950, 385–394.PubMedGoogle Scholar
  39. 39.
    Binder, M., Schanz, M., and Hartig, A. (1991) Vector-mediated overexpression of catalase A in the yeast Saccharomyces cerevisiae induces inclusion body formation. Eur. J. Cell Biol. 54, 305–312.PubMedGoogle Scholar
  40. 40.
    Choi, S. Y., Lee, S. Y., and Bock, R. M. (1993) High level expression in Saccharomyces cerevisiae of an artificial gene encoding a repeated tripeptide aspartyl-phenylalanyl-lysine. J. Biotechnol. 30, 211–223.PubMedCrossRefGoogle Scholar
  41. 41.
    Weik, R., Francky, A., Striedner, G., Raspor, P., Bayer, K., and Mattanovich, D. (1998) Recombinant expression of alliin lyase from garlic (Allium sativum) in bacteria and yeasts. Planta Med. 64, 387–388.PubMedCrossRefGoogle Scholar
  42. 42.
    Barr, K. A., Hopkins, S. A., and Sreekrishna, K. (1992) Protocol for efficient secretion of HSA developed from Pichia pastoris. Pharm. Eng. 12, 48–51.Google Scholar
  43. 43.
    Kauffman, K. J., Pridgen, E. M., Doyle, F. J. 3rd, Dhurjati, P. S., and Robinson, A. S. (2002) Decreased protein expression and intermittent recoveries in BiP levels result from cellular stress during heterologous protein expression in Saccharomyces cerevisiae. Biotechnol. Prog. 18, 942–950.PubMedCrossRefGoogle Scholar
  44. 44.
    Hohenblum, H., Borth, N., and Mattanovich, D. (2003) Assessing viability and cell-associated product of recombinant protein producing Pichia pastoris with flow cytometry. J. Biotechnol. 102, 281–290.PubMedCrossRefGoogle Scholar
  45. 45.
    Patil, C. and Walter, P. (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr. Opin. Cell Biol. 13, 349–355.PubMedCrossRefGoogle Scholar
  46. 46.
    Welihinda, A. A., Tirasophon, W., and Kaufman, R. J. (1999) The cellular response to protein misfolding in the endoplasmic reticulum. Gene Expr. 7, 293–300.PubMedGoogle Scholar
  47. 47.
    Casagrande, R., Stern, P., Diehn, M., et al. (2000) Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol. Cell 5, 729–735.PubMedCrossRefGoogle Scholar
  48. 48.
    Hohenblum, H., Gasser, B., Maurer, M., Borth, N., and Mattanovich, D. (2004) Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol. Bioeng. 85, 367–375.PubMedCrossRefGoogle Scholar
  49. 49.
    Valkonen, M., Penttila, M., and Saloheimo, M. (2003) Effects of inactivation and constitutive expression of the unfolded-protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69, 2065–2072.PubMedCrossRefGoogle Scholar
  50. 50.
    Pakula, T. M., Laxell, M., Huuskonen, A., Uusitalo, J., Saloheimo, M., and Penttila, M. (2003) The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells. J. Biol. Chem. 278, 45,011–45,020.CrossRefGoogle Scholar
  51. 51.
    Vai, M., Brambilla, L., Orlandi, I., et al. (2000) Improved secretion of native human insulin-like growth factor 1 from gas1 mutant Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 66, 5477–5479.PubMedCrossRefGoogle Scholar
  52. 52.
    Gemmill, T. R. and Trimble, R. B. (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim. Biophys. Acta. 1426, 227–237.PubMedGoogle Scholar
  53. 53.
    Nakanishi-Shindo, Y., Nakayama, K., Tanaka, A., Toda, Y., and Jigami, Y. (1993) Structure of the N-linked oligosaccharides that show the complete loss of a-1,6-polymannose outer chain from Och1, Och1 Mnn1 and Och1 Mnn1 Alg3 mutants of Saccharomyces cerevisiae. J. Biol. Chem. 268, 26338–26345.PubMedGoogle Scholar
  54. 54.
    Martinet, W., Maras, M., Saelens, X., Jou, W. M., and Contreras, R. (1998) Modification of the protein glycosylation pathway in the methylotrophic yeast Pichia pastoris. Biotechnol. Lett. 20, 1171–1177.CrossRefGoogle Scholar
  55. 55.
    Schwientek, T., Narimatsu, H., and Ernst, J. F. (1996) Golgi localization and in vivo activity of a mammalian glycosyltransferase (human b-1,4-galactosyltransferase) in yeast. J. Biol. Chem. 271, 3398–3405.PubMedCrossRefGoogle Scholar
  56. 56.
    Choi, B. K., Bobrowicz, P., Davidson, R. C., et al. (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. PNAS USA 100, 5022–5027.PubMedCrossRefGoogle Scholar
  57. 57.
    Hamilton, S. R., Bobrowicz, P., Bobrowicz, B., et al. (2003) Production of complex human glycoproteins in yeast. Science 310, 1244–1246.CrossRefGoogle Scholar
  58. 58.
    Bobrowicz, P., Davidson, R. C., Li, H., et al. (2004) Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris—production of complex humanised glycoproteins with terminal galactose. Glycobiol. 14, 757–766.CrossRefGoogle Scholar
  59. 59.
    Vervecken, W., Kaigorodov, V., Callewaert, N., Geysens, S., De Vusser, K., and Contreras, R. (2004) In vivo synthesis of mammalian-like hybrid-type N-glycans in Pichia pastoris. Appl. Environ. Microbiol. 70, 2639–2646.PubMedCrossRefGoogle Scholar
  60. 60.
    Wildt, S. and Gerngross, T. U. (2005) The humanization of N-glycosylation pathways in yeast. Nat. Rev. Microbiol. 3, 119–128.PubMedCrossRefGoogle Scholar
  61. 61.
    Sumi, A., Okuyama, K., Kobayashi, K., Ohtani, W., Ohmura, T., and Yokoyama, K. (1999) Purification of recombinant human serum albumin. Efficient purification using STREAMLINE. Bioseparation 8, 195–200.PubMedCrossRefGoogle Scholar
  62. 62.
    Mattanovich, D., Gasser, B., Hohenblum, H., and Sauer, M. (2004) Stress in recombinant protein producing yeasts. J. Biotechnol. 113, 121–135.PubMedCrossRefGoogle Scholar
  63. 63.
    Sauer, M., Branduardi, P., Gasser, B., Valli, M., Maurer, M., Porro, D., and Mattanovich, D. (2004) Differential gene expression in recombinant Pichia pastoris analysed by heterologous DNA microarray hybridization. Microb. Cell Fact. 3, 17.PubMedCrossRefGoogle Scholar
  64. 64.
    Rautio, J., Barken, K. B., Lahdenperä, J., Breitenstein, A., Molin, S., and Neubauer, P. (2003) Sandwich hybridisation assay for quantitative detection of yeast RNAs in crude cell lysates. Microb. Cell Fact. 2, 4.PubMedCrossRefGoogle Scholar
  65. 65.
    Weik, R., Striedner, G., Francky, A., Raspor, P., Bayer, K., and Mattanovich, D. (1999) Induction of oxidofermentative ethanol formation in recombinant cells of Saccharomyces cerevisiae yeasts. Food Technol. Biotechnol. 37, 191–194.Google Scholar
  66. 66.
    Hong, F., Meinander, N. Q., and Jonsson, L. J. (2002) Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris. Biotechnol. Bioeng. 79, 438–449.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang, W., Smith, L. A., Plantz, B. A., Schlegel, V. L., and Meagher, M. M. (2002) Design of methanol feed control in Pichia pastoris fermentations based upon a growth model. Biotechnol. Prog. 18, 1392–1399.PubMedCrossRefGoogle Scholar
  68. 68.
    Jahic, M., Wallberg, F., Bollok, M., Garcia, P., and Enfors, S-O. (2003) Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures. Microb. Cell Fact. 2, 6.PubMedCrossRefGoogle Scholar
  69. 69.
    Loewen, M. C., Liu, X., Davies, P. L., and Daugulis, A. J. (1997). Biosynthetic production of type II fish antifreeze protein: fermentation by Pichia pastoris. Appl. Microbiol. Biotechnol. 48, 480–486.PubMedCrossRefGoogle Scholar
  70. 70.
    Curvers, S., Brixius, P., Klauser, T., Thommes, J., Weuster-Botz, D., Takors, R., and Wandrey, C. (2001) Human chymotrypsinogen B production with Pichia pastoris by integrated development of fermentation and downstream processing. Part 1. Fermentation. Biotechnol. Prog. 17, 495–502.PubMedCrossRefGoogle Scholar
  71. 71.
    Goodey, A. R. (1993) The production of heterologous plasma proteins. Trends Biotechnol. 11, 430–433.PubMedCrossRefGoogle Scholar
  72. 72.
    Porro, D., Martegani, E., Ranzi, B. M., and Alberghina, L. (1991) Heterologous gene expression in continuous cultures of budding yeast. Appl. Microbiol. Biotechnol. 34, 632–636.PubMedCrossRefGoogle Scholar
  73. 73.
    Stephanopoulos, G., Aristodou, A., and Nielsen, J. (1998) Metabolic Engineering. Academic Press, Inc., San Diego, Calif.Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Danilo Porro
    • 1
  • Michael Sauer
    • 2
  • Paola Branduardi
    • 1
  • Diethard Mattanovich
    • 2
  1. 1.Department of Biotechnology and BioscienceUniversity of Milano-BicoccaMilanoItaly
  2. 2.Institute of Applied MicrobiologyBOKU-University of Natural Resources and Applied Life SciencesViennaAustria

Personalised recommendations