Molecular Biotechnology

, Volume 30, Issue 2, pp 143–149 | Cite as

Expressed sequence tag analysis of Eimeria-stimulated intestinal intraepithelial lymphocytes in chickens

  • Wongi Min
  • Hyun S. Lillehoj
  • Christopher M. Ashwell
  • Curtis P. van Tassell
  • Rami A. Dalloul
  • Lakshmi K. Matukumalli
  • Jae Y. Han
  • Erik P. Lillehoj


Intraepithelial lymphocytes (IELs) play a critical role in protective immune response to intestinal pathogens such as Eimeria, the etiologic agent of avian coccidiosis. A list of genes expressed by intestinal IELs of Eimeria-infected chickens was compiled using the expressed sequence tag (EST) strategy. The 14,409 ESTs consisted of 1851 clusters and 7595 singletons, which revealed 9446 unique genes in the data set. Comparison of the sequence data with chicken DNA sequences in GenBank identified 125 novel clones. This EST library will provide a valuable resource for profiling global gene expression in normal and pathogen-infected chickens and identifying additional unique immune-related genes.

Index Entries

Chickens intestinal lymphocytes expressed sequence tag (EST) expression cDNA library Eimeria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Neutra, N. R., Mantis, N. J., and Kraehenbuhl, J. P. (2001) Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat. Immunol. 2, 1004–1009.PubMedCrossRefGoogle Scholar
  2. 2.
    Gobel, T. W., Kaspers, B., and Stangassinger, M. (2001) NK and T-cells constitute two major, functionally distinct intestinal epithelial lymphocyte subsets in the chicken. Int. Immunol. 13, 757–762.PubMedCrossRefGoogle Scholar
  3. 3.
    Lillehoj, H. S. and Trout, J. M. (1996) Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites. Clin. Microbiol. Rev. 9, 349–360.PubMedGoogle Scholar
  4. 4.
    Lillehoj, H. S. and Lillehoj, E. P. (2000) Avian coccidiosis. A review of acquired intestinal immunity and vaccination strategies. Avian Dis. 44, 408–425.PubMedCrossRefGoogle Scholar
  5. 5.
    Yun, C. H., Lillehoj, H. S., and Choi, K. D. (2000) Eimeria tenella infection induces local gamma interferon production and intestinal lymphocyte subpopulation changes. Infect. Immunol. 68, 1282–1288.CrossRefGoogle Scholar
  6. 6.
    Laurent, F., Mancassola, R., Lacroix, S., Menezes, R., and Naciri, M. (2001) Analysis of chicken mucosal immune response to Eimeria tenella and Eimeria maxima infection by quantitative reverse transcription-PCR. Infect. Immunol. 69, 2527–2534.CrossRefGoogle Scholar
  7. 7.
    Min, W., Lillehoj, H. S., Kim, S., et al. (2003) Profiling local gene expression changes associated with Eimeria maxima and Eimeria acervulina using cDNA microarray. Appl. Microbiol. Biotechnol. 62, 392–399.PubMedCrossRefGoogle Scholar
  8. 8.
    Staeheli, P., Puehler, F., Schneider, K. Gobel, T. W., and Kaspers, B. (2001) Cytokines of birds: conserved functions—a largely different look. J. Interferon Cytokine Res. 21, 993–1010.PubMedCrossRefGoogle Scholar
  9. 9.
    Min, W., Lillehoj, H. S., Burnside, J., Weining, K. C., Staeheli, P., and Zhu, J. J. (2001) Adjuvant effects of IL-1β, IL-2, IL-8, IL-15, IFN-α, IFN-γ, TGF-β4 and lymphotactin on DNA vaccination against Eimeria acervulina. Vaccine 20, 267–274.PubMedCrossRefGoogle Scholar
  10. 10.
    Smith, T. P., Godtel, R. A., and Lee, R. T. (2000) PCR-based setup for high-throughput cDNA library sequencing on the ABI 3700 automated DNA sequencer. Biotechniques 29, 698–700.PubMedGoogle Scholar
  11. 11.
    Tirunagaru, V. G., Sofer, L., Cui, J., and Burnside, J. (2000) An expressed sequence tag database of T-cell-enriched activated chicken splenocytes: sequence analysis of 5251 clones. Genomics 66, 144–151.PubMedCrossRefGoogle Scholar
  12. 12.
    Boardman, P. E., Sanz-Ezquerro, J., Overton, I. M., et al. (2002) A comprehensive collection of chicken cDNAs. Curr. Biol. 12, 1965–1969.PubMedCrossRefGoogle Scholar
  13. 13.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.PubMedGoogle Scholar
  14. 14.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.PubMedCrossRefGoogle Scholar
  15. 15.
    Cogburn, L. A., Wang, X., Carre, W., et al. (2003) Systems-wide chicken DNA microarrays, gene expression profiling, and discovery of functional genes. Poult. Sci. 82, 939–951.PubMedGoogle Scholar
  16. 16.
    Andersson, M., Gunne, H., Agerberth, B., et al. (1995) NK-lysin, a novel effector peptide of cytotoxic T and NK cells. Structure and cDNA cloning of the porcine form, induction by interleukin 2, antibacterial and antitumour activity. EMBO J. 14, 1615–1625.PubMedGoogle Scholar
  17. 17.
    Andersson, M., Gunne, H., Agerberth, B., et al. (1996) NK-lysin, structure and function of a novel effector molecule of porcine T and NK cells. Vet. Immunol. Immunopathol. 54, 123–126.PubMedCrossRefGoogle Scholar
  18. 18.
    West, D. K. and Ball, L. A. (1982) Induction and maintenance of 2′,5′-oligoadenylate synthetase in interferon-treated chicken embryo cells. Mol. Cell. Biol. 2, 1436–1443.PubMedGoogle Scholar
  19. 19.
    Mena, A., Nichani, A. K., Popowych, Y., et al. (2003) Innate immune responses induced by CpG oligodeoxyribonucleotide stimulation of ovine blood mononuclear cells. Immunology 110, 250–257.PubMedCrossRefGoogle Scholar
  20. 20.
    Brown, W. C., Estes, D. M., Chantler, S. E., Kegerreis, K. A., and Suarez, C. E. (1998) DNA and a CpG oligonucleotide derived from Babesia bovis are mitogenic for bovine B cells. Infect. Immunol. 66, 5423–5432.Google Scholar
  21. 21.
    Abdrakhmanov, I., Lodygin, D., Geroth, P., et al. (2000) A large database of chicken bursal ESTs as a resource for the analysis of vertebrate gene function. Genome Res. 10, 2062–2069.PubMedCrossRefGoogle Scholar
  22. 22.
    Schneider, K., Puehler, F., Baeuerle, D., et al. (2000) cDNA cloning of biologically active chicken interleukin-18. J. Interferon Cytokine Res. 20, 879–883.PubMedCrossRefGoogle Scholar
  23. 23.
    Lillehoj, H. S., Min, W., Choi, K. D., et al. (2001) Molecular, cellular, and functional characterization of chicken cytokines homologous to mammalian IL-15 and IL-2. Vet. Immunol. Immunopathol. 82, 229–244.PubMedCrossRefGoogle Scholar
  24. 24.
    Min, W. and Lillehoj, H. S. (2002) Isolation and characterization of chicken interleukin-17 cDNA. J. Interferon Cytokine Res. 22, 1123–1128.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Wongi Min
    • 1
    • 7
  • Hyun S. Lillehoj
    • 1
  • Christopher M. Ashwell
    • 2
  • Curtis P. van Tassell
    • 3
  • Rami A. Dalloul
    • 1
  • Lakshmi K. Matukumalli
    • 4
  • Jae Y. Han
    • 5
  • Erik P. Lillehoj
    • 6
  1. 1.Animal Parasitic Diseases Laboratory, Animal & Natural Resources InstituteUS Dept. of AgricultureBeltsvilleUSA
  2. 2.Growth Biology Laboratory, Animal & Natural Resources InstituteUS Dept. of AgricultureBeltsvilleUSA
  3. 3.Bovine Functional Genomics Laboratory, Animal & Natural Resources InstituteUS Dept. of AgricultureBeltsvilleUSA
  4. 4.Bioinformatics & Computational BiologyGeorge Mason UniversityFairfaxUSA
  5. 5.School of Agricultural BiotechnologySeoul National UniversitySeoulKorea
  6. 6.Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreUSA
  7. 7.Department of Animal Science and TechnologySunchon National UniversitySuncheon, ChonnamKorea

Personalised recommendations