Molecular Biotechnology

, Volume 30, Issue 1, pp 9–19 | Cite as

Optimization of high-efficiency transfection of adult human mesenchymal stem cells in vitro

  • Hana Haleem-Smith
  • Assia Derfoul
  • Chukwuka Okafor
  • Richard Tuli
  • Douglas Olsen
  • David J. Hall
  • Rocky S. TuanEmail author


With the advent of recent protocols to isolate multipotent human mesenchymal stem cells (MSCs), there is a need for efficient transfection methodologies for these cells. Most standard transfection methods yield poor transfection efficiencies for MSCs (<1%). Here we have optimized a high-efficiency transfection technique for low passage MSCs derived from adult human bone marrow. This technique is an extension of electroporation, termed amaxa Nucleofection™, where plasmid DNA is transfected directly into the cell nucleus, independent of the growth state of the cell. With this technique, we demonstrate up to 90% transfection efficiency of the viable population of MSCs, using plasmid construct containing a standard cytomegalovirus (CMV) early promoter driving expression of green fluorescent protein (GFP). Although little variation in transfection efficiency was observed between patient samples, a 2-fold difference in transfection efficiency and a 10-fold difference in expression levels per cell were seen using two distinct CMV-GFP expression plasmids. By fluorescence-activated cell sorting, the GFP expressing cells were sorted and subcultured. At 2 wk posttransfection, approx 25% of the population of sorted cells were GFP positive, and by 3 wk, nearly 10% of the cells still retained GFP expression. Transfection of these cells with plasmid containing either the collagen type I (Colla1) promoter or the cartilage oligomeric matrix protein (COMP) promoter, each driving expression of GFP, produced a somewhat lower transfection efficiency (approx 40%), due in part to the lower activity of transcription from these promoters compared to that of CMV. Transfection with the collagen type II (Col2a1) promoter linked to GFP exhibited low expression, due to the fact that collagen type II is not expressed in these cells. Upon culturing of the Col2a1-GFP transfected cells in a transforming growth factor-β3-containing medium known to induce mesenchymal chondrogensis, a significant enhancement of GFP level was seen, indicating the ability of the transfected cells to differentiate into chondrocytes and express cartilage-specific genes, such as Col2a1. Taken together, these data provide evidence of the applicability of this technique for the efficient transfection of MSCs.

Index Entries

Transfection mesenchymal stem cells GFP reporter chondrogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Owen, M. and Friedenstein, A. J. (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp. 136, 42–60.PubMedGoogle Scholar
  2. 2.
    Herzog, E. L., Chai, L., and Krause, D. S. (2003) Plasticity of marrow-derived stem cells. Blood 102, 3483–3493.PubMedCrossRefGoogle Scholar
  3. 3.
    Caterson, E. J., Nesti, L. J., Danielson, K. G., and Tuan, R. S. (2002) Human marrow-derived mesenchymal progenitor cells: Isolation, culture expansion, and analysis of differentiation. Mol. Biotechnol. 20, 245–256.PubMedCrossRefGoogle Scholar
  4. 4.
    Huard, J., Cao, B., and Qu-Petersen, Z. (2003) Musclederived stem cells: potential for muscle regeneration. Birth Defects Res. Part C Embryo Today 69, 230–237.CrossRefGoogle Scholar
  5. 5.
    Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., et al. (2002) Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 13, 4279–4295.PubMedCrossRefGoogle Scholar
  6. 6.
    Gimble, J. M. and Guilak, F. (2003) Differentiation potential of adipose derived adult stem (ADAS) cells. Curr. Top. Dev. Biol. 58, 137–160.PubMedCrossRefGoogle Scholar
  7. 7.
    Noth, U., Osyczka, A. M., Tuli, R., Hickok, N. J., Danielson, K. G., and Tuan, R. S. (2002) Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J. Orthop. Res. 20, 1060–1069.PubMedCrossRefGoogle Scholar
  8. 8.
    Osyczka, A. M., Noth, U., Danielson, K. G., and Tuan, R. S. (2002) Different osteochondral potential of clonal cell lines derived from adult human trabecular bone. Ann. N. Y. Acad. Sci. 961, 73–77.PubMedCrossRefGoogle Scholar
  9. 9.
    Tuli, R., Seghatoleslami, M. R., Tuli, S., Danielson, K. G., and Tuan, R. S. (2003) A simple, high-yield method for obtaining multipotential mesenchymal progenitor cells from trabecular bone. Mol. Biotechnol. 23, 37–49.PubMedCrossRefGoogle Scholar
  10. 10.
    Tuli, R., Tuli, S., Seghatoleslami, M. R., Wang, M. L., Hozack, W. J., Manner, P. A., et al. (2003) Long-term culture expansion, growth kinetics, and multilineage potential of mesenchymal progenitor cells derived from human trabecular bone. Stem Cells 21, 681–693.PubMedCrossRefGoogle Scholar
  11. 11.
    Johnstone, B., Hering, M. H., Caplan, A. I., Goldberg, V. M., and Yoo, J. U. (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell. Res. 238, 265–272.PubMedCrossRefGoogle Scholar
  12. 12.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.PubMedCrossRefGoogle Scholar
  13. 13.
    Mackay, A. M., Beck, S. C., Murphy, J. M., Barry, F. P., Chichester, C. O., and Pittenger, M. F. (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 4, 415–428.PubMedCrossRefGoogle Scholar
  14. 14.
    Osyczka, A. M., Danielson, K. G., Noth, U., Yoon, K., Caterson, E. J., and Tuan, R. S. (2002) Multi-lineage differentiation of adult human bone marrow stromal cells transduced with human papilloma virus16 E6/E7 genes. Calcif. Tiss. Int. 71, 447–458.CrossRefGoogle Scholar
  15. 15.
    Tuan, R. S., Boland, G., and Tuli, R. (2003) Mesenchymal stem cells and cell-based tissue engineering. Arthr. Res. Ther. 5, 32–45.CrossRefGoogle Scholar
  16. 16.
    Goins, W. F., Wolfe, D., Krisky, D. M., Bai, Q., Burton, E. A., Fink, D. J., and Glorioso, J. C. (2004) Delivery using herpes simplex virus: an overview. Methods Mol. Biol. 246, 257–299.PubMedGoogle Scholar
  17. 17.
    Coonrod, A., Li, F. Q., and Horwitz, M. (1997) On the mechanism of DNA transfection: efficient gene transfer without viruses. Gene Ther. 4, 1313–1321.PubMedCrossRefGoogle Scholar
  18. 18.
    Hamm, A., Krott, N., Breibach, I., Blindt, R., and Bosserhoff, A. K. (2002) Efficient transfection method for primary cells. Tissue Eng. 8, 235–245.PubMedCrossRefGoogle Scholar
  19. 19.
    Osaki, M., Tan, L., Choy, B. K., Yoshida, Y., Cheah, K. S., Auron, P. E., and Goldring, M. B. (2003) The TATA-containing core promoter of the type II collagen gene (COL2A1) is the target of interferon-gamma-mediated inhibition in human chondrocytes: requirement for Stat1 alpha, Jak1 and Jak2. Biochem. J. 369, 103–115.PubMedCrossRefGoogle Scholar
  20. 20.
    Kubota, K., Okazaki, J., Louie, O., Kent, K. C., and Liu, B. (2003) TGF-beta stimulates collagen (I) in vascular smooth muscle cells via a short element in the proximal collagen promoter. J. Surg. Res. 109, 43–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Deere, M., Rhoades Hall, C., Gunning, K. B., LeFebvre, V., Ridall, A. L., and Hecht, J. T. (2001) Analysis of the promoter region of human cartilage oligomeric matrix protein (COMP). Matrix Biol. 19, 783–792.PubMedCrossRefGoogle Scholar
  22. 22.
    Bowles, J., Schepers, G., and Koopman, P. (2000) Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev. Biol. 227, 239–255.PubMedCrossRefGoogle Scholar
  23. 23.
    Tuli, R., Tuli, S., Nandi, S., Huang, X., Hozack, W.J., Danielson, K.G., et al. (2003) TGF-b1 mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and MAP kinase and Wnt signaling crosstalk. J. Biol. Chem. 278, 41227–41236.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Hana Haleem-Smith
  • Assia Derfoul
  • Chukwuka Okafor
  • Richard Tuli
  • Douglas Olsen
  • David J. Hall
  • Rocky S. Tuan
    • 1
    Email author
  1. 1.Cartilage Biology and Orthopaedics BranchNational Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of HealthBethesdaUSA

Personalised recommendations