Molecular Biotechnology

, 28:47 | Cite as

Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics



Macrolides have enjoyed a resurgence as new derivatives and related compounds have come to market. These newer compounds have become important in the treatment of community-acquired pneumoniae and nontuberculosis-Mycobacterium diseases. In this review, the bacterial mechanisms of resistance to the macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics, the distribution of the various acquired genes that confer resistance, as well as mutations that have been identified in clinical and laboratory strains are examined.

Index Entries

Macrolide lincosamide streptogramin ketolide oxazolidinone resistance 


  1. 1.
    Kirst, H. A. (2001) Introduction to the macrolide antibiotics. In Macrolide Antibiotics (Schonfeld, W. and Kirst, H. A., eds.). Birkhauser Verlag, Boston, pp. 1–14.Google Scholar
  2. 2.
    Roberts, M. C., Sutcliffe, J., Courvalin, P., Jensen, L. B., Rood, J., and Seppala, H. (1999) Nomenclature for macrolide and macrolide-lincosamide streptogramin B antibiotic resistance determinants. Antimicrob. Agents Chemother. 43, 2823–2830.PubMedGoogle Scholar
  3. 3.
    Iacoviello, V. R. and Zinner, S. H. (2001) Macrolides: a clinical overview. In Macrolide Antibiotics (Schonfeld, W. and Kirst, H. A., eds.). Birkhauser Verlag, Boston, pp. 15–24.Google Scholar
  4. 4.
    Bryskier, A. and Denis, A. (2001) Ketolides: novel antibacterial agents designed to overcome resistance to erythromycin A within gram-positive cocci. In Macrolide Antibiotics (Schonfeld, W. and Kirst, H. A., eds.). Birkhauser Verlag, Boston, pp. 97–140.Google Scholar
  5. 5.
    Camps, M., Arrizabalaga, G., and Boothroyd, J. (2002) An rRNA mutation identifies the apicoplast as the target for clindamycin in Toxoplasma gondii. Mol. Microbiol. 43, 1309–1328.PubMedCrossRefGoogle Scholar
  6. 6.
    Speciale, A., La Ferla, K., Caccamo, F., and Nicoletti, G. (1999) Antimicrobial activity of quinupristin/dalfopristin, a new injectable streptogramin with wide Gram-positive spectrum. Int. J. Antimicrob. Agents 13, 21–28.PubMedCrossRefGoogle Scholar
  7. 7.
    Edlund, C., Sillerstrom, E., Wahlund, E., and Nord, C. E. (1998) In vitro activity of HMR 3647 against anaerobic bacteria. J Chemother. 10, 280–284.PubMedGoogle Scholar
  8. 8.
    Khan, A. A., Slifer, T. R., Arujo, F. G., and Remington, J. S. (2002) Effect of quinupristin-dalopristin on production of cytokines by human monocytes. J. Infect. Dis. 182, 356–358.CrossRefGoogle Scholar
  9. 9.
    Luh, K-T., Hsueh, P-R., Teng, L-J., et al. (2000) Quinupristin-dalopristin resistance among gram-positive bacteria in Taiwan. Antimicrob. Agents Chemother. 44, 3374–3380.PubMedCrossRefGoogle Scholar
  10. 10.
    Kugler, K. C., Denys, G. A., Wilson, M. L., and Jones, R. N. (2000) Serious streptococcal infections produced by isolates resistant to streptogramins (quinupristin-dalopristin): case reports from the SENTRY antimicrobial surveillance program. Diagn. Microbiol. Infect. Dis. 36, 269–272.PubMedCrossRefGoogle Scholar
  11. 11.
    Livermore, D. M. (2003) Linezolid in vitro: mechanism and antibacterial spectrum [Review]. J. Antimicrob. Chemother. 51(Suppl S2) ii9-ii16.PubMedGoogle Scholar
  12. 12.
    MacGowan, A. P. (2003) Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with gram-positive infections [Review]. J. Antimicrob. Chemother. 51(Suppl S2) ii17-ii25.PubMedGoogle Scholar
  13. 13.
    Wilcox, M. H. (2003) Efficacy of linezolid versus comparator therapies in Gram-positive infections [Review]. J. Antimicrob. Chemother. 51,(Suppl S2) ii27-ii35.PubMedGoogle Scholar
  14. 14.
    Vera-Cabrera, L., Gomez-Flores, A., Escalante-Fuentes, W. G., and Welsh, O. (2001) In vitro activity of PNU-100766 (linezolid), a new oxazolidinone anti-microbial, against Norcardia brasiliensis. Antimicrob. Agents Chemother. 45, 3629–3620.PubMedCrossRefGoogle Scholar
  15. 15.
    Weisblum, B. (1995) Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577–585.PubMedGoogle Scholar
  16. 16.
    Roberts, M. C. and Brown, M. B. (1994) Macrolide-lincosamide resistance determinants in streptococcal species isolated from the bovine mammary gland. Vet. Microbiol. 40, 253–261.PubMedCrossRefGoogle Scholar
  17. 17.
    Schwarz, S., Kehrenberg C., and Ojo, K. K. (2002) Staphylococcus sciuri gene erm(33), encoding inducible resistance to macrolides, lincosamides, and streptogramin B antibiotics, is a product of recombination between erm(C) and erm(A). Antimicrob. Agents Chemother. 46, 3621–3623.PubMedCrossRefGoogle Scholar
  18. 18.
    Stanton, T. B. and Humphrey S. B. (2003) Isolation of tetracycline-resistant Megasphaera elsdenii strains with novel mosaic gene combinations of tet(O) and tet(W) from swine. Appl. Environ. Microbiol. 69, 3874–3882.PubMedCrossRefGoogle Scholar
  19. 19.
    Chung, W. O., Werckenthin, C., Schwarz, S., and Roberts, M. C. (1999) Host range of the ermF rRNA methylase gene in human and animal bacteria. J. Antimicrob. Chemother. 43, 5–14.PubMedCrossRefGoogle Scholar
  20. 20.
    Valentine, P. J., Shoemaker, N. B., and Salyers, A. A. (1988) Mobilization of bacteroides plasmids by bacteroides conjugal elements. J. Bacteriol. (170), 1319–1324.PubMedGoogle Scholar
  21. 21.
    Atkinson, B. A., Abu-al-Jaibat, A., and LeBlanc, D. J. (1997) Antibiotic resistance among enterococci isolated from clinical specimens between 1953 and 1954. Antimicrob. Agents Chemother. 41, 1598–1600.PubMedGoogle Scholar
  22. 22.
    Cousin, S. L., Jr., Whittington, W. L., and Roberts, M. C. (2003) Acquired macrolide resistance genes in pathogenic Neisseria spp. isolated between 1940 and 1987, Antimicrob. Agents. Chemother. 47, 3877–3880.PubMedCrossRefGoogle Scholar
  23. 23.
    Hecht, D. W., Thompson, J. S., and Malamy, M. H. (1989) Characterization of the termini and transposition products of Tn4399, a conjugal mobilizing transposon of Bacteroides fragilis. Proc. Natl. Acad. Sci. USA 86, 5340–5344.PubMedCrossRefGoogle Scholar
  24. 24.
    Rice, L. B. (1998) Tn916 family conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrob. Agents Chemother. 42, 1871–1877.PubMedGoogle Scholar
  25. 25.
    Luna, V. A., Heiken, M., Judge, K., et al. (2002) Distribution of the mef(A) gene in gram-positive bacteria from healthy Portuguese children. Antimicrob. Agents Chemother. 46, 2513–2517.PubMedCrossRefGoogle Scholar
  26. 26.
    Matsuoka, M., Endou, K., Kobayashi, H., Inoue, M., and Nakajima, Y. (1997) A dyadic plasmid that shows MLS and PMS resistance in Staphylococcus aureus. FEMS Microbiol. Lett. 148, 91–96.PubMedCrossRefGoogle Scholar
  27. 27.
    Lina, G., Quaglia, A., Reverdy, M-E., Leclercq, R., Vandenesch, F., and Etienne, J. (1999) Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob. Agents Chemother. 43, 1062–1066.PubMedGoogle Scholar
  28. 28.
    Rodriquez, A., Olano, C., Vilches, C., Mendez, C., and Salas, J. A. (1993) Streptomyces antibioticus contains at least three oleandomycin-resistance determinants, one of which shows similarity with proteins of the ABC-transporter superfamily. Mol. Microbiol. 8, 571–582.CrossRefGoogle Scholar
  29. 29.
    Singh, K. V., Malathum, K., and Murray, B. E. (2001) Disruption of an Enterococcus faecium species-specific gene, a homologue of acquired macrolide resistance genes of staphylococci, is associated with an increase in macrolide susceptibility. Antimicrob. Agents Chemother. 45, 3672–3673.CrossRefGoogle Scholar
  30. 30.
    Santagati, M., Iannelli, F., Oggioni, M. R., Stefani, S., and Pozzi, G. (2000) Characterization of a genetic element carrying the macrolide efflux gene mef(A) in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 44, 2585–2587.PubMedCrossRefGoogle Scholar
  31. 31.
    Luna, V. A., Cousin, S., Jr., Whittington, W. L. H, and Roberts, M. C. (2000) Identification of the conjugative mef gene in clinical Acinetobacter junii and Neisseria gonorrhoeae isolates. Antimicrob. Agents Chemother. 44, 2503–2506.PubMedCrossRefGoogle Scholar
  32. 32.
    Giovanetti, E., Brenciani, A., Lupidi, R., Roberts, M. C., and Varaldo, P. E. (2003) The presence of the tet(O) gene in erythromycin and tetracycline-resistant strains of Streptococcus pyogenes. Antimicrob. Agents Chemother. 47, 2844–2849.PubMedCrossRefGoogle Scholar
  33. 33.
    Tait-Kamradt, A., Clancy, J., Cronan, M., et al. (1997) mefE is necessary for the erythromycin-resistance M phenotype in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 41, 2335–2336.Google Scholar
  34. 34.
    Leclercq, R. and Courvalin, P. (2002) Resistance to macrolides and related antibiotics in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 46, 2727–2734.PubMedCrossRefGoogle Scholar
  35. 35.
    Sutcliffe, J. A. and Leclercq, R. (2003) Mechanisms of resistance to macrolides, lincosamides and ketolides. In Macrolide Antibiotics (Schonfeld, W. and Kirst, H. A., eds.). Birkhauser Verlag, Basel, pp. 281–317.Google Scholar
  36. 36.
    Roberts, M. C., Judge, K., Ulep, C., Luis, M., Bernardo, M., and Leitao, J. (2002) Acquired macrolide resistance, mef(A) and erm(B) genes in gram negative bacteria isolated from healthy Portugese children. 42nd Intersci. Conf. Antimicrob. Agents Chemother. Abstr C2-1992, p. 124, San Diego, CA, Sept. 27–30, 2002.Google Scholar
  37. 37.
    Hyde, T. B., Gay, K., Stephens, D. S., et al. (2001) Macrolide resistance among invasive Streptococcus pneumoniae isolates. JAMA 286, 1857–1862.PubMedCrossRefGoogle Scholar
  38. 38.
    Widdowson, C. A. and Klugman, L. P. (1998) Emergence of M phenotype of erythromycin-resistance pneumococci in South Africa. Emerg. Infect. Dis. 4, 277–281.PubMedCrossRefGoogle Scholar
  39. 39.
    Arthur, M., Andremont, A., and Courvalin, P. (1987) Distribution of erythromycin esterase and rRNA methylase genes in members of the family Enterobacteriaceae highly resistant to erythromycin. Antimicrob. Agents Chemother. 31, 404–409.PubMedGoogle Scholar
  40. 40.
    Thungapathra, M., Amita Sinha, K. K., Chaudhuri, S. R., et al. (2002) Occurrence of antibiotic resistance gene cassettes aac(6′)-Ib, dfrA5, dfrA12, and ereA2 in Class I integrons in Non-O1, Non-O139 Vibrio cholerae strains in India. Antimicrob. Agents Chemother. 46, 2948–2955.PubMedCrossRefGoogle Scholar
  41. 41.
    Allignet, J. and El Solh, N. (1999) Comparative analysis of staphylococcal plasmids carrying three streptogramin-resistance genes: vat-vgb-vga. Plasmid 42, 134–138.PubMedCrossRefGoogle Scholar
  42. 42.
    Jensen, L. B., Hammerum, A. M., Aarestrup, F. M., van den Bogaard, A. E., and Stobberingh, E. E. (1998) Occurrence of satA and vgb genes in streptograminresitant Enterococcus faecium isolates of animal and human origins in the Netherlands. Antimicrob. Agents Chemother. 42, 3330–3331.PubMedGoogle Scholar
  43. 43.
    Seoane, A. and Garcia Lobo, J. M. (2000) Identification of a streptogramin A acetyltransferase gene in the chromosome of Yersinia enterocolitica. Antimicrob. Agents Chemother. 44, 905–909.PubMedCrossRefGoogle Scholar
  44. 44.
    Soltani, M., Beighton, D., Philpott-Howard, J., and Woodford, N. (2000) Mechanisms of resistance to quinupristin-dalfopristin among isolates of Enterococcus faecium from animals, raw meat, and hospital patients in Western Europe. Antimicrob. Agents Chemother. 44, 433–436.PubMedCrossRefGoogle Scholar
  45. 45.
    Noguchi, N., Emura, A., Matsuyama, H., O’Hara, K., Sasatsu, M., and Kono, M. (1995) Nucleotide sequence and characterization of erythromycin resistance determinant that encodes macrolide 2′-phosphotransdferase I in Escherichia coli. Antimicrob. Agents Chemother. 39, 2359–2363.PubMedGoogle Scholar
  46. 46.
    Noguchi, N., Katayama, J., and O’Hara, K. (1996) Cloning and nucleotide sequence of the mphB gene from macrolide 2′-phosphotransdferase II in Escherichia coli. FEMS Microbiol. Lett. 144, 197–202.PubMedGoogle Scholar
  47. 47.
    Matsuoka, M., Endou, K., Kobayashi, H., Inoue, M., and Nakajima, Y. (1998) A plasmid that encodes three genes for resistance to macrolide antibiotics in Staphylococcus aureus. FEMS Microbiol. Lett. 167, 221–227.PubMedCrossRefGoogle Scholar
  48. 48.
    Kim, Y-H., Cha, C-J., and Cerniglia, C. E. (2002) Purification and characterization of an erythromycin esterase from an erythromycin-resistant Pseudomonas sp. FEMS Microbiol. Lett. 210, 239–244.PubMedCrossRefGoogle Scholar
  49. 49.
    Ojo, K. K., Roberts, M. C., Ulep, C. et al. (2003) Macrolide esterases, phosphorylases, efflux pump and rRNA methylases in Gram-negative commensal bacteria. 43rd Intersci. Conf. Antimicrob. Agents Cheother., Abstract C2-90, Chicago, IL, Sept. 14–17, 2003.Google Scholar
  50. 50.
    Ng, L-K., Martin, I., Liu, G., and Bryden, L. (2002) Mutation in 23S rRNA associated with macrolide resistance in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 46, 3020–3025.PubMedCrossRefGoogle Scholar
  51. 51.
    Taylor, D. E., Ge, Z., Purych, D., Lo, T., and Hiratsuka, K. (1997) Cloning and sequence analysis of two copies of a 23S rRNA gene from Helicobacter pylori and association of clarithromycin resistance with 23S rRNA mutations. Antimicrob. Agents Chemother. 43, 2621–2628.Google Scholar
  52. 52.
    Nash, K. A. and Inderlied, C. B. (1996) Rapid detection of mutations associated with macrolide resistance in Mycobacterium avium complex. Antimicrob. Agents Chemother. 40, 1748–1750.PubMedGoogle Scholar
  53. 53.
    Depardieu, F. and Courvalin, P. (2001) Mutation in 23S rRNA responsible for resistance to 16-membered macrolides and streptogramins in Streptococcus pneumnoniae. Antimicrob. Agents Chemother. 45, 319–323.PubMedCrossRefGoogle Scholar
  54. 54.
    Prunier, A-L., Malbruny, B., Tande, D., Picard, B., and Leclercq, R. (2002) Clinical isolates of Staphylococcus aureus with ribosomal mutations conferring resistance to macrolides. Antimicrob. Agents Chemother. 46, 3054–3056.PubMedCrossRefGoogle Scholar
  55. 55.
    Ross, J. I., Snelling, A. M., Eady, E. A., et al. (2001) Phenotypic and genotypic characterization of antibiotic-resistant Propionibacterium acnes isolated from acne patients attending dermatology clinics in Europe, the U.S.A., Japan and Australia. Br. J. Dermatol. 144, 339–346.PubMedCrossRefGoogle Scholar
  56. 56.
    Furneri, P. M., Rappazzo, G., Musumarra, M. P., Pietro, P. D., Catania, L. S., and Roccasalva, L. S. (2001) Two new point mutations at A2062 associated with resistance to 16-membered macrolide antibiotics in mutant strains of Mycoplasma hominis. Antimicrob. Agents Chemother. 45, 2958–2960.PubMedCrossRefGoogle Scholar
  57. 57.
    Lucier, T. S., Heitzman, K., Liu, K-K., and Hu, P-C. (1995) Transition mutations in the 23S rRNA of erythromycin-resistant isolates of Mycoplasma pneumoniae. Antimicrob. Agents Chemother. 39, 2770–2773.PubMedGoogle Scholar
  58. 58.
    Bartkus, J. M., Juni, A., Ehresmann, K., et al. (2003) Identification of a mutation associated with erythromycin resistance in Bordetella pertussis: Implications for surveillance of antimicrobial resistance. J. Clin. Microbiol. 41, 1167–1172.PubMedCrossRefGoogle Scholar
  59. 59.
    Jensen, L. B. and Aarestrup, F. M. (2001) Macrolide resistance in Campylobacter coli of animal origin in Denmark. Antimicrob. Agents Chemother. 45, 371, 372.PubMedCrossRefGoogle Scholar
  60. 60.
    Lee, S. Y., Ning, Y, and Fenno, J. C. (2002) 23S rRNA point mutation associated with erythromycin resistance in Treponema denticola. FEMS Microbiol. Lett. 207, 39–42.PubMedCrossRefGoogle Scholar
  61. 61.
    Xu, W., Pagel, F. T., and Murgola, E. J. (2002) Mutations in the GTPase center of Escherichia coli 23S rRNA indicate release factor 2-interactive sites. J. Bacteriol. 184, 1200–1203.PubMedCrossRefGoogle Scholar
  62. 62.
    Vester, B. and Douthwaite, S. (2001) Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob. Agents Chemother. 45, 1–12.PubMedCrossRefGoogle Scholar
  63. 63.
    Pereyre, S., Gonzalez, P., de Barbeyrac, B., et al. (2002) Mutations in 23S rRNA account for intrinsic resistance to macrolides in Mycoplasma hominis and Mycoplasma fermentans and for acquire resistance to macrolides in M. hominis. Antimicrob. Agents Chemother. 46, 3142–3150.PubMedCrossRefGoogle Scholar
  64. 64.
    Nagai, K., Appelbaum, P. C., Davies, T. A., et al. (2002) Susceptibilities to telithromycin and six other agents and prevalence of macrolide resistance due to L4 ribosomal protein mutation among 992 pneumococci from 10 Central and Eastern European countries. Antimicrob. Agents Chemother. 46, 371–377.PubMedCrossRefGoogle Scholar
  65. 65.
    Malbruny, B., Canu, A., Bozdogan B., et al. (2002) Resistance to quinupristin-dalfopristin due to mutations of L22 ribosomal protein in Staphylococcus aureus. Antimicrob. Agents Chemother. 46, 2200–2207.PubMedCrossRefGoogle Scholar
  66. 66.
    Tait-Kamradt, A., Davies, T., Appelbaum, P. C., et al. (2000) Two new mechanisms of macrolide resistance in clinical strains of Streptococcus pneumoniae from Eastern Europe and North America. Antimicrob. Agents Chemother. 44, 3395–3401.PubMedCrossRefGoogle Scholar
  67. 67.
    Tait-Kamradt, A., Davies, T., Cronan, M., Jacobs, M. R., Appelbaum, P. C., and Sutcliffe, J. (2000) Mutations in 23S rRNA and L4 ribosomal protein account for resistance in pneumococcal strains selected in vitro by macrolide passage. Antimicrob. Agents Chemother. 44, 2118–2125.PubMedCrossRefGoogle Scholar
  68. 68.
    Peric, M., Bozdogan, B., Jacobs, M. R., and Appelbaum, P. C. (2003) Effects of an efflux mechanism and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical isolates. Antimicrob. Agents Chemother. 47, 1017–1022.PubMedCrossRefGoogle Scholar
  69. 69.
    Prunier, A. L., Malbruny, B., Tande, D., Picard, B., and Leclercq, R. (2002) Clinical isolates of Staphylococcus aureus with ribosomal mutations conferring resistance to macrolides. Antimicrob. Agents Chemother. 46, 3054–3056.PubMedCrossRefGoogle Scholar
  70. 70.
    Malbruny, B., Nagai, K., Coquemont, M., et al. (2002) Resistance to macrolides in clinical isolates of Streptococcus pyogenes due to ribosomal mutations. J. Antimicrob. Chemother. 49, 935–939.PubMedCrossRefGoogle Scholar
  71. 71.
    Besier, S., Hunfeld, K-P., Giesser, I., Schafer, V., Brade, V., and Wichelhaus, T. A. (2003) Selection of ketolide resistance in Staphylococcus aureus. Int. J. Antimicrob. Agents 22, 87–88.PubMedCrossRefGoogle Scholar
  72. 72.
    Garza-Ramos, G., Xiong, L., Zhong P., and Mankin, A. (2001) Binding site of macrolide antibiotics on the ribosome: New resistance mutation identifies a specific interaction of ketolides with rRNA. J. Bacteriol. 184, 6898–6907.CrossRefGoogle Scholar
  73. 73.
    Woodford, N., Tysall, L., Auckland, C., et al. (2002) Detection of oxazolidinone-resistant Enterococcus faecalis and Enterococcus faecium strains by real-time PCR and PCR-restriction fragment length polymorphism analysis. J. Clin. Microbiol. 40, 4298–4300.PubMedCrossRefGoogle Scholar
  74. 74.
    Schmitz, F-J., Petridou, J., Jagusch, H., Astfalk, N., Scheuring, S., and Schwarz, S. (2002) Molecular characterization of ketolide-resistance erm(A)-carrying Staphylococcus aureus isolates selected in vitro by telithromycin, ABT-773, quinupristin and clindamycin. J. Antimicrob. Chemother. 49, 611–617.PubMedCrossRefGoogle Scholar
  75. 75.
    Webber, M. A. and Piddock, L. J. V. (2003) The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 51, 9–11.PubMedCrossRefGoogle Scholar
  76. 76.
    Bolhuis, H., van Veen, H. W., Poolman, B., Driessen, A. J. M., and Konings, W. N. (1997) Mechanisms of multidrug transporters. FEMS Microbiol. Rev. 21, 55–84.PubMedCrossRefGoogle Scholar
  77. 77.
    Nikaido, H. (1998) Multidrug efflux pumps of Gram-negative bacteria. J. Bacteriol. 178, 5853–5859.Google Scholar
  78. 78.
    Nikaido, H. (1998) Multiple antibiotic resistance and efflux. Curr. Opin. Microbiol. 1, 516–523.PubMedCrossRefGoogle Scholar
  79. 79.
    Grkovic, S., Brown, M. H., and Skurray, R. A. (2002) Regulation of bacterial drug export systems. Microbiol. Mol. Biol. Rev. 66, 671–701.PubMedCrossRefGoogle Scholar
  80. 80.
    Paulsen, I. T., Brown, M. H., and Skurray, R. A. (1996) Proton-dependent multidrug efflux systems. Microbiol Rev. 60, 575–608.PubMedGoogle Scholar
  81. 81.
    Cousin, S. L., Jr., Whittington, W. L., and Roberts, M. C. (2003) Acquired macrolide resistance genes and the 1-bp deletion in the mtrR promoter in Neisseria gonorrhoeae. J. Antimicrob. Chemother. 51, 131–133.PubMedCrossRefGoogle Scholar
  82. 82.
    Xia, M., Whittington, W. L., Shafer, W. M., and Holmes, K. K. (2000) Gonorrhea among men who have sex with men: outbreak caused by a single genotype of erythromycin-resistant Neisseria gonorrhoeae with a single-base pair deletion in the mtrR promoter region. J. Infect. Dis. 181, 2080–2082.PubMedCrossRefGoogle Scholar
  83. 83.
    Zarantonelli, L., Borthagaray, G., Lee, E. H., Veal, W., and Shafer, W. M. (2001) Decrease susceptibility to azithromycin and erythromycin mediated by a novel mtr(R) promoter mutation in Neisseria gonorrhoeae. J. Antimicrob. Chemoth. 47, 651–654.CrossRefGoogle Scholar
  84. 84.
    Shafer, W. M., Balthazar, J. T., Hagman, K. E., and Morse, S. A. (1995) Missense mutations that alter the DNA-binding domain of the MtrR protein occur frequently in rectal isolates of Neisseria gonorrhoeae that are resistant to faecal lipids. Microbiology 141, 907–911.PubMedCrossRefGoogle Scholar
  85. 85.
    Johnson, S. R., Sandul, A. L., Parekh, M., Wang, S. A., Knapp, J. S., and Trees, D. L. (2003) Mutations causing in vitro resistance to azithromycin in Neisseria gonorrhoeae. Int. J. Antimicrob. Agents 21, 414–419.PubMedCrossRefGoogle Scholar
  86. 86.
    Sanchez, L., Pan, W., Vinas, M., and Nicaido, H. (1997) The acrAB homology of Haemophilus influenzae codes of a functional multidrug efflux pump. J. Bacteriol. 179, 6855–6857.PubMedGoogle Scholar
  87. 87.
    Poelarends, G. J., Mazurkiewicz, P., Putman, M., Cool R. H., van Veen, H. W., and Konings, W. N. (2002) An ABC-type multidrug transporter of Lactococcus lactis possesses an exceptionally broad substrate specificity. Drug Resist. Updat. 3, 330–334.CrossRefGoogle Scholar
  88. 88.
    Marshall, B., Tachibana, C., and Levy, S. B. (1984) Frequency of tetracycline resistance determinants classes among lactose-fermenting coliforms. Antimicrob. Agents Chemother. 24, 835–840.Google Scholar
  89. 89.
    Aminov, R. I., Chee-Sanford, J. C., Garrigues, N., et al. (2002) Development, validation, and application of PCR primers for detection of tetracycline efflux genes of gram-negative bacteria. Appl. Environ. Microbiol. 68, 1786–1793.PubMedCrossRefGoogle Scholar
  90. 90.
    Strizhkov, B. N., Drobyshev, A. L., Mikhailovich, V. M., and Mirzabekov, A. D. (2000) PCR amplification on a microarray of gel-immobilized oligonucleotides: detection of bacterial toxin- and drug-resistant genes and their mutations. Biotechniques 29, 844–857.PubMedGoogle Scholar
  91. 91.
    Call, D. R., Bakko, M. K., Krug, M. J., and Roberts, M. C. (2003) Identifying antimicrobial resistance genes using DNA microarrays. Antimicrob. Agents Chemother., 47, 3290–3295.PubMedCrossRefGoogle Scholar
  92. 92.
    Niwa, H., Chuma, T., Okamoto, K., and Itoh, K. (2001) Rapid detection of mutations associated with resistance to erythromycin Campylobacter jejuni/coli by PCR and line probe assay. Int. J. Antimicrob. Agents 18, 359–364.PubMedCrossRefGoogle Scholar
  93. 93.
    Roberts, M. C. (1989) Gene transfer in the urogenital and respiratory tract. In Gene Transfer in the Environment (Levy, S. B. and Miller, R. V., eds.). McGraw-Hill, New York, pp. 347–375.Google Scholar
  94. 94.
    Zhu, J., Oger, P. M., Schrammeijer, B., Hooykaas, P. J. J., Farrand, S. K., and Winans, S. C. (2000) The base of crown gall tumorigenesis. J. Bacteriol. 182, 3885–3895.PubMedCrossRefGoogle Scholar
  95. 95.
    Benveniste, R. and Davies, J. (1973) Aminoglycoside antibiotic-inactivation enzymes in actinomycetes similar to those present in clinical isolates of antibiotic resistant bacteria. Proc. Natl. Acad. Sci. USA 172, 3628–3632.Google Scholar
  96. 96.
    Lawrence, J. G. and Ochman, H. (2002) Reconciling the many faces of lateral gene transfer. Trends Microbiol. 10, 1–4.PubMedCrossRefGoogle Scholar
  97. 97.
    Koonin, E. V., Makarova, K. S., and Aravind, L. (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55, 709–742.PubMedCrossRefGoogle Scholar
  98. 98.
    Rowe-Magnus, D. A., Guerout, A-M., and Mazel, D. (2002) Bacterial resistance evolution by recruitment of superintegron gene cassettes. Mol. Microbiol. 43, 1657–1669.PubMedCrossRefGoogle Scholar
  99. 99.
    Novick, R. P. (2003) Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid 49, 93–105.PubMedCrossRefGoogle Scholar
  100. 100.
    Bushman, F. (2002) Lateral DNA transfer-mechanisms and consequences. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 1–168, 388–391.Google Scholar
  101. 101.
    Clewell, D. B., Flannagan, S. E., and Jaworski, D. (1995) Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transpososns. Trends Microbiol. 3, 229–236.PubMedCrossRefGoogle Scholar
  102. 102.
    Miranda, C. D., Kehrenberg, C., Ulep, C., Schwarz, S., and Roberts, M. C. (2003) Diversity of tetracycline resistance genes from bacteria isolated from Chilean Salmon farms. Antimicrob. Agents Chemother. 47, 883–888.PubMedCrossRefGoogle Scholar
  103. 103.
    Doran, J. L., Pang, Y., Mdluli, K. E., et al. (1997) Mycobacterium tuberculosis efpA encodes an efflux protein of the QacA transporter family. Clin. Diagn. Lab. Immunol. 4, 23–32.PubMedGoogle Scholar
  104. 104.
    Shoemaker, N. B., Vlamikis, H., Hayes, K., and Salyers, A. A. (2001) Evidence for extensive resistance gene transfer among Bacteroides spp. and between Bacteroides and other genera in the human colon. Appl. Environ. Microbiol. 67, 561–568.PubMedCrossRefGoogle Scholar
  105. 105.
    Dixon, J. (1967) Pneumococcus resistant to erythromycin and lincomycin. Lancet 1, 573.CrossRefGoogle Scholar
  106. 106.
    Waites, K., Johnson, C., Gray, B., Edwards, K., Crain, M., and Benjamin, W., Jr. (2000) Use of clindamycin disks to detect macrolide resistance mediated by ermB and mefE in Streptococcus pneumoniae isolates from adults and children. J. Clin. Microbiol. 38, 1731–1734.PubMedGoogle Scholar
  107. 107.
    Montanari, M. P., Cochetti, I., Mingoia, M., and Varaldo, P. E. (2003) Phenotypic and molecular characterization of tetracycline- and erythromycin-resistant strains of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 47, 2236–2241.PubMedCrossRefGoogle Scholar
  108. 108.
    Appelbaum, P. C. (1992) Antimicrobial resistance in Streptococcus pneumoniae: an overview. Clin. Infect. Dis. 15, 77–83.PubMedGoogle Scholar
  109. 109.
    Tomasz, A. (1999) New faces of an old pathogen: emergence and spread of a multidrug-resistant Streptococcus pneumoniae. Am. J. Med. 107, 55S-66S.PubMedCrossRefGoogle Scholar
  110. 110.
    Hakenbeck, R. (1998) Mosaic genes and their role in penicillin-resistant Electrophoresis 19, 597–601.PubMedCrossRefGoogle Scholar
  111. 111.
    Karlsson, M., Fellstrom, C., Heldtander, M. U., Johansson, K. E., and Franklin, A. (1999) Genetic basis of macrolide and lincosamide resistance in Brachyspira (Serpulina) hyodysenteriae. FEMS Microbiol. Lett. 172, 255–260.PubMedCrossRefGoogle Scholar
  112. 112.
    Hughes, V. M. and Datta, N. (1983) Conjugative plasmids in bacteria of the “pre-antibiotic” era. Nature 301, 725–726.CrossRefGoogle Scholar
  113. 113.
    Centers for Disease Control and Prevention. (2002) Sexually Transmitted Diseases Treatment Guidelines: MMWR 51 (No. RR-6). Centers for Disease Control and Prevention, Atlanta, GA.Google Scholar
  114. 114.
    National Committee for Clinical Laboratory Standards. (1998) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 3rd ed. Approved Standards M7-A4, M100-S8. National Committee for Clinical Laboratory Standards, Wayne, PA.Google Scholar
  115. 115.
    Riley, D. E., Roberts, M. C., Takayama, T., and Krieger, J. N. (1992) Development of polymerase chain reaction-based (PCR) diagnosis of Trichomonas vaginalis using cloned, genomic sequences. J. Clin. Microbiol. 30, 465–472.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  1. 1.Department of Pathobiology, Box 357238, School of Public Health and Community MedicineUniversity of WashingtonSeattle

Personalised recommendations