Molecular Biotechnology

, Volume 27, Issue 1, pp 59–74 | Cite as

Preclinical safety testing of biotechnology-derived pharmaceuticals

Understanding the issues and addressing the challenges
  • Frank R. Brennan
  • Leigh Shaw
  • Mark G. Wing
  • Christine Robinson


The unique and complex nature of biotechnology-derived pharmaceuticals has meant that it is often not possible to follow the conventional safety testing programs used for chemicals, and hence they are evaluated on a case-by-case basis. Nonclinical safety testing programs must be rationally designed with a strong scientific understanding of the product, including its method of manufacture, purity, sequence, structure, species specificity, pharmacological and immunological effects, and intended clinical use. This knowledge, coupled with a firm understanding of the regulatory requirements for particular product types, will ensure that the most sensitive and regulatory-compliant test systems are used to optimize the chances of gaining regulatory approval for clinical testing or marketing authorization in the shortest possible time frame.

Index Entries

Biotechnology safety testing monoclonal antibody recombinant protein vaccine gene therapy somatic cell therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Johnson, I. (1983) Human insulin from recombinant DNA technology. Science 219, 632–637.PubMedCrossRefGoogle Scholar
  2. 2.
    Walsh, G. (1999) Biopharmaceuticals: Biochemistry and Biotechnology. Wiley, Chichester, UK.Google Scholar
  3. 3.
    Vadham-Raj, S. (2000) Clinical experience with recombinant human thrombopoietin in chemotherapy-induced thrombocytopenia. Semin. Hematol. 37, 28–34.CrossRefGoogle Scholar
  4. 4.
    Brinkhous, K., Sandberg, H., Widlund, L., Read, M., Nichols, T., Sigman, J., et al. (2002) Preclinical pharmacology of albumin-free B-domain deleted recombinant factor VIII. Semin. Thromb. Hemost. 28, 269–272.PubMedCrossRefGoogle Scholar
  5. 5.
    Masci, P., Bukowski, R. M., Patten, P. A., Osborn, B. L., and Borden, E. C. (2003) New and modified interferon alfas: preclinical and clinical data. Curr. Oncol. Rep. 5, 108–113.PubMedCrossRefGoogle Scholar
  6. 6.
    Chuang, V. T., Kragh-Hansen, U., and Otagiri, M. (2002) Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm. Res. 19, 569–577.PubMedCrossRefGoogle Scholar
  7. 7.
    Egrie, J. C. and Browne, J. K. (2001) Development and characterization of novel erythropoiesis stimulating protein (NESP). Br. J. Cancer 84 (Suppl 1), 3–10.PubMedCrossRefGoogle Scholar
  8. 8.
    Bonig, H., Silbermann, S., Weller, S., Kirschke, R., Korholz, D., Janssen, G., et al. (2001) Glycosylated vs non-glycosylated granulocyte colony-stimulating factor (G-CSF): results of a prospective randomised monocentre study. Bone Marrow Transplant 28, 259–264.PubMedCrossRefGoogle Scholar
  9. 9.
    King, D. J. and Adair, J. R. (1999) Recombinant antibodies for diagnosis and therapy of human disease. Curr. Opin. Drug Discov. Dev. 2, 110–117.Google Scholar
  10. 10.
    Carter, P. and Merchant, A. M. (1997) Engineering antibodies for imaging and therapy. Curr. Opin. Biotechnol. 8, 449–454.PubMedCrossRefGoogle Scholar
  11. 11.
    Kohhler, G. and Milstein, C. (1975) Continuous culture of fused cells secreting antibody of pre-defined specificity. Nature 256, 495–497.CrossRefGoogle Scholar
  12. 12.
    Winter, G. and Milstein, C. (1991) Man-made antibodies. Nature 349, 293–299.PubMedCrossRefGoogle Scholar
  13. 13.
    Hudson, P. J. and Souriau, C. (2003) Engineered antibodies. Nat. Med. 9, 129–134.PubMedCrossRefGoogle Scholar
  14. 14.
    Dall’Acqua, W. and Carter, P. (1998) Antibody engineering. Curr. Opin. Struct. Biol. 8, 443–450.PubMedCrossRefGoogle Scholar
  15. 15.
    Pluckthun, A. and Pack, P. (1997) New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnology 3, 83–105.PubMedCrossRefGoogle Scholar
  16. 16.
    Chester, K. and Hawkins, R. (1995) Clinical issues in antibody design. Trends Biotechnol. 13, 294–300.PubMedCrossRefGoogle Scholar
  17. 17.
    Adair, J. R. (1999) Antibody engineering and expression. in: Biotechnology, vol. 5a: Recombinant Proteins, Monoclonal Antibodies and Therapeutic Genes (Rehm, H.-J. and Reed, G., eds.). Wiley, Weinheim, pp. 219–244.Google Scholar
  18. 18.
    Hudson, P. J. (1998) Recombinant antibody fragments. Curr. Opin. Biotechnol. 9, 395–402.PubMedCrossRefGoogle Scholar
  19. 19.
    Sandhu, J. (1994) Engineered human vaccines. Crit. Rev. Biotechnol. 14, 1–27.PubMedGoogle Scholar
  20. 20.
    Russo, S., Turin, L., Zanella, A., Ponti, W., and Poli, G. (1997) What’s going on in vaccine technology? Med. Res. Rev. 17, 277–301.PubMedCrossRefGoogle Scholar
  21. 21.
    Jackson, D. C., Purcell, A. W., Fitzmaurice, C. J., Zeng, W., and Hart, D. N. (2002) The central role played by peptides in the immune response and the design of peptide-based vaccines against infectious diseases and cancer. Curr. Drug Targets 3, 175–196.PubMedCrossRefGoogle Scholar
  22. 22.
    Ragupathi, G., Cappello, S., Yi, S. S., Canter, D., Spassova, M., Bornmann, W. G., et al. (2002) Comparison of antibody titers after immunization with monovalent or tetravalent KLH conjugate vaccines. Vaccine 20, 1030–1038.PubMedCrossRefGoogle Scholar
  23. 23.
    Hindle, Z., Chatfield, S. N., Phillimore, J., Bentley, M., Johnson, J., Cosgrove, C. A., et al. (2002) Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type III secretion system (ssaV) mutations by immunization of healthy volunteers. Infect. Immun. 70, 3457–3467.PubMedCrossRefGoogle Scholar
  24. 24.
    Khan, S. A., Stratford, R., Wu, T., Mckelvie, N., Bellaby, T., Hindle, Z., et al. (2003) Salmonella typhi and S. typhimurium derivatives harbouring deletions in aromatic biosynthesis and Salmonella Pathogenicity Island-2 (SPI-2) genes as vaccines and vectors. Vaccine 21, 538–548.PubMedCrossRefGoogle Scholar
  25. 25.
    Brennan, F. R., Jones, T. D., and Hamilton, W. D. (2001) Cowpea mosaic virus as a vaccine carrier of heterologous antigens. Mol. Biotechnol. 17, 15–26.PubMedCrossRefGoogle Scholar
  26. 26.
    O’Neal, C. M., Clements, J. D., Estes, M. K., and Conner, M. E. (1998) Rotavirus 2/6 virus-like particles administered intranasally with cholera toxin, Escherichia coli heat-labile toxin (LT), and LT-R192G induce protection from rotavirus challenge. J. Virol. 72, 3390–3393.PubMedGoogle Scholar
  27. 27.
    Kang, S. M. and Compans, R. W. (2003) Enhancement of mucosal immunization with virus-like particles of simian immunodeficiency virus. J. Virol. 77, 3615–3623.PubMedCrossRefGoogle Scholar
  28. 28.
    Beignon, A. S., Briand, J. P., Rappuoli, R., Muller, S., and Partidos, C. D. (2003). The LTR72 mutant of heat-labile enterotoxin of Escherichia coli enhances the ability of peptide antigens to elicit CD4+ T cells and secrete gamma interferon after coapplication onto bare skin. Infect. Immun. 70, 3012–3019.CrossRefGoogle Scholar
  29. 29.
    Mason, H. A., Warzecha, H., Mor T., and Arntzen, C. J. (2002) Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine. Trends Mol. Med. 8, 324–329.PubMedCrossRefGoogle Scholar
  30. 30.
    Donnelly, J. (1997) DNA vaccines. Annu. Rev. Immunol. 15, 617–648.PubMedCrossRefGoogle Scholar
  31. 31.
    Gupta, R. and Siber, G. (1995) Adjuvants for human vaccines: current status, problems and future prospects. Vaccine 13, 1263–1274.PubMedCrossRefGoogle Scholar
  32. 32.
    McCluskie, M. J. and Weeratna, R. D. (2001) Novel adjuvant systems. Curr. Drug Targets Infect. Disord. 1, 263–271.PubMedCrossRefGoogle Scholar
  33. 33.
    Weiss, R., Scheiblhofer, S., Freund, J., Ferreira, F., Livey, I., and Thalhamer, J. (2002) Gene gun bombardment with gold particles displays a particular Th2-promoting signal that over-rules the Th1-inducing effect of immunostimulatory CpG motifs in DNA vaccines. Vaccine 20, 3148–3154.PubMedCrossRefGoogle Scholar
  34. 34.
    Brennan, F. R., Bellaby, T., Helliwell, S. M., Jones, T. D., Kamstrup, S., Dalsgaard, K., et al. (1999) Chimeric plant virus particles administered nasally or orally induce systemic and mucosal immune responses in mice. J. Virol. 73, 930–938.PubMedGoogle Scholar
  35. 35.
    Hanke, T., McMichael, A. J., Samuel, R. V., Powell, L. A., McLoughlin, L., Crome, S. J., et al. (2002) Lack of toxicity and persistence in the mouse associated with administration of candidate DNA- and modified vaccinia virus Ankara (MVA)-based HIV vaccines for Kenya. Vaccine 21, 108–114.PubMedCrossRefGoogle Scholar
  36. 36.
    Crystal, R. (1995) The gene as a drug. Nat. Med. 1, 15–17.PubMedCrossRefGoogle Scholar
  37. 37.
    Mulligan, R. (1993) The basic science of gene therapy. Science 260, 926–931.PubMedCrossRefGoogle Scholar
  38. 38.
    Tirapu, I., Rodriguez-Calvillo, M., Qian, C., Duarte, M., Smerdou, C., Palencia, B., et al. (2002) Cytokine gene transfer into dendritic cells for cancer treatment. Curr. Gene Ther. 2, 79–89.PubMedCrossRefGoogle Scholar
  39. 39.
    Chiou, H. C., Lucas, M. A., Coffin, C. C., Banaszczyk, M. G., Ill, C. R., and Lollo, C. P. (2001) Gene therapy strategies for the treatment of chronic viral hepatitis. Expert Opin. Biol. Ther. 1, 629–639.PubMedCrossRefGoogle Scholar
  40. 40.
    Deeks, S. G., Wagner, B., Anton, P. A., Mitsuyasu, R. T., Scadden, D. T., Huang, C., et al. (2002) A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol. Ther. 5, 788–797.PubMedCrossRefGoogle Scholar
  41. 41.
    Kline, J. N. (2002) DNA therapy for asthma. Curr. Opin. Allergy Clin. Immunol. 2, 69–73.PubMedCrossRefGoogle Scholar
  42. 42.
    Trucco, M., Robbins, P. D., Thomson, A. W., and Giannoukakis, N. (2002) Gene therapy strategies to prevent autoimmune disorders. Curr. Gene Ther. 2, 341–354.PubMedCrossRefGoogle Scholar
  43. 43.
    Fillat, C., Carrio, M., Cascante, A., and Sangro, B. (2003) Suicide gene therapy mediated by the Herpes Simplex virus thymidine kinase gene/Ganciclovir system: fifteen years in application. Curr. Gene Ther. 3, 13–26.PubMedCrossRefGoogle Scholar
  44. 44.
    Merkle, C. J. and Montgomery, D. W. (2003) Gene therapy with vascular endothelial growth factor reduces angina. J. Cardiovasc. Nurs. 18, 38–43.PubMedGoogle Scholar
  45. 45.
    Smith, A. E. (1995) Viral vectors in gene therapy. Annu. Rev. Microbiol. 49, 807–838.PubMedCrossRefGoogle Scholar
  46. 46.
    Lai, C. M., Lai, Y. K., and Rakoczy, P. E. (2002) Adenovirus and adeno-associated virus vectors. DNA Cell Biol. 21, 895–913.PubMedCrossRefGoogle Scholar
  47. 47.
    Burton, E. A., Fink, D. J., and Glorioso, J. C. (2002) Gene delivery using herpes simplex virus vectors. DNA Cell Biol. 21, 915–936.PubMedCrossRefGoogle Scholar
  48. 48.
    Bauerschmitz, G. J., Barker, S. D., and Hemminki, A. (2002) Adenoviral gene therapy for cancer: from vectors to targeted and replication competent agents (review). Int. J. Oncol. 21, 1161–1174.PubMedGoogle Scholar
  49. 49.
    Darji, A., Guzman, C. A., Gerstel, B., et al. (1997) Oral somatic transgene vaccination using attenuated S. typhimurium. Cell 91, 765–775.PubMedCrossRefGoogle Scholar
  50. 50.
    Friedmann, T. (1997) Overcoming the obstacles to gene therapy. Scientific American (June issue), 80–85.Google Scholar
  51. 51.
    Cavazzana-Calvo, M., Hacein-Bey, S., de Saint Basile, G., Gross, F., Yvon, E., Nusbaum, P., et al. (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672.PubMedCrossRefGoogle Scholar
  52. 52.
    Bessis, N., Cottard, V., Saidenberg-Kermanach, N., Lemeiter, D., Fournie, C., and Boissier, M. C. (2002) Syngeneic fibroblasts transfected with a plasmid encoding interleukin-4 as non-viral vectors for anti-inflammatory gene therapy in collagen-induced arthritis. J. Gene Med. 4, 300–307.PubMedCrossRefGoogle Scholar
  53. 53.
    Terando, A. and Chang A. E. (2002) Applications of gene transfer to cellular immunotherapy. Surg. Oncol. Clin. N. Am. 11, 621–643.PubMedCrossRefGoogle Scholar
  54. 54.
    Moberg, L., Johansson, H., Lukinius, A., Berne, C., Foss, A., Kallen, R., et al. (2002) Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet 360, 2039–2045.PubMedCrossRefGoogle Scholar
  55. 55.
    Barbero, A., Benelli, R., Minghelli, S., Tosetti, F., Dorcaratto, A., Ponzetto Wernig, A., et al. (2001) Growth factor supplemented matrigel improves ectopic skeletal muscle formation: a cell therapy approach. J. Cell Physiol. 186, 183–192.PubMedCrossRefGoogle Scholar
  56. 56.
    Culver, K. W., Anderson, W. F., and Blaese, R. M. (1991) Lymphocyte gene therapy. Hum. Gene Ther. 2, 107–109.PubMedCrossRefGoogle Scholar
  57. 57.
    Gill, D. R., Southern, K. W., Mofford, K. A., Seddon, T., Huang, L., Sorgi, F., et al. (1997) A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 4, 199–209.PubMedCrossRefGoogle Scholar
  58. 58.
    Malech, H. L., Maples, P. B., Whiting-Theobald, N., Linton, G. F., Sekhsaria, S., Vowells S. J., et al. (1997) Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc. Natl. Acad. Sci. USA 94, 12,133–12,138.CrossRefGoogle Scholar
  59. 59.
    Teichler Zallen, D. (2000) US gene therapy in crisis. Trends Genet. 16, 272–275.PubMedCrossRefGoogle Scholar
  60. 60.
    Bonetta, L. (2002) Leukemia case triggers tighter gene-therapy controls. Nat. Med. 8, 1189.PubMedCrossRefGoogle Scholar
  61. 61.
    Schirle, M., Weinschenk, T., and Stevanovic, S. (2001) Combining computer algorithms with experimental approaches permits the rapid and accurate identi ication of T cell epitopes from defined antigens. J. Immunol. Methods 257, 1–16.PubMedCrossRefGoogle Scholar
  62. 62.
    De Groot, A. S., Bosma, A., Chinai, N., Frost, J., Jesdale, B. M., Gonzalez, M. A., et al. (2001) From genome to vaccine: in silico predictions, ex vivo verification. Vaccine 19, 4385–4395.PubMedCrossRefGoogle Scholar
  63. 63.
    Treacy, G. (2000) Using an analogous monoclonal antibody to evaluate the reproductive and chronic toxicity potential for a humanized anti-TNFβ monoclonal antibody. Hum. Exp. Toxicol. 19, 226–228.PubMedCrossRefGoogle Scholar
  64. 64.
    Bugelski, P. J., Herzyk, D. J., Rehm, S., Harmsen, A. G., Gore, E. V., Williams, D. M., et al. (2002) Preclinical development of keliximab, a primatized anti-CD4 monoclonal antibody, in human CD4 transgenic mice: characterization of the model and safety studies. Hum. Exp. Toxicol. 19, 230–243.CrossRefGoogle Scholar
  65. 65.
    Chamberlain, P. (2002) Immunogenicity of therapeutic proteins: measurement, prediction, minimisation and regulatory consequences of immunogenicity. The Regulatory Review 5(6), 4–10.Google Scholar
  66. 66.
    Ottesen, J. L., Nilsson, P., Jami, J., Weilguny, D., Duhrkop, M., Bucchini, D., et al. (1994) The potential immunogenicity of human insulin and insulin analogues evaluated in a transgenic mouse model. Diabetologia 37, 1178–1185.PubMedGoogle Scholar
  67. 67.
    Rudick, R. A., Simonian, N. A., Alam, J. A., Campion, M., Scaramucci, J. O., Jones, W., et al. (1998) Incidence and significance of neutralizing antibodies to interferon beta-1a in multiple sclerosis. Neurology 50, 1266–1272.PubMedGoogle Scholar
  68. 68.
    Li, J., Yang, C., Xia, Y., Bertino, A., Glaspy, J., Roberts, M., et al. (2001) Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood 98, 3241–3248.PubMedCrossRefGoogle Scholar
  69. 69.
    Casadevall, N., Nataf, J., Viron, B., Kolta, A., Kiladjian, J. J., Martin-Dupont, P., et al. (2002) Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N. Engl. J. Med. 346, 469–475.PubMedCrossRefGoogle Scholar
  70. 70.
    Hanauer, S. B. (1999) Review article: safety of infliximab in clinical trials. Aliment. Pharmacol. Ther. 13 (Suppl 4), 16–22.PubMedCrossRefGoogle Scholar
  71. 71.
    Tcheng, J. E., Kereiakes, D. J., Lincoff, A. M., George, B. S., Kleiman, N. S., Sane, D. C., et al. (2001) Abciximab readministration: results of the ReoPro Readministration Registry. Circulation 104, 870–875.PubMedGoogle Scholar
  72. 72.
    Kontsek, P., Liptakova, H., and Kontsekova, E. (1999) Immunogenicity of interferon-alpha 2 in therapy: structural and physiological aspects. Acta Virol. 43, 63–70.PubMedGoogle Scholar
  73. 73.
    Exon, J. H., Bussiere J. L., and Mather, G. G. (1990) Immunotoxicity testing in the rat: an improved multiple assay model. Int. J. Immunopharmacol. 12, 699–701.PubMedCrossRefGoogle Scholar
  74. 74.
    Piersma, A. H., Verhoef, A., Sweep, C. G., de Jong, W. H., and van Loveren, H. (2002) Developmental toxicity but no immunotoxicity in the rat after prenatal exposure to diethylstilbestrol. Toxicology 174, 173–181.PubMedCrossRefGoogle Scholar
  75. 75.
    Homey, B., Schuppe, H.-C., Assmann, T., Vohr, H.-W., Lauerma, A. I., Ruzicka, T., et al. (1997) A local lymph node assay to analyse immuno-suppressive effects of topically applied drugs. Eur. J. Pharmacol. 325, 199–207.PubMedCrossRefGoogle Scholar
  76. 76.
    Li, Q., Minami, M., and Inagaki, H. (1998) Acute and subchronic immunotoxicity of p-chloronitrobenzene in mice, I: Effect on natural killer, cytotoxic T-lymphocyte activities and mitogen-stimulated lymphocyte proliferation. Toxicology 127, 223–232.PubMedCrossRefGoogle Scholar
  77. 77.
    Bleavins, M. R. and de la Iglesia, F. A. (1995) Cynomolgus monkeys (Macaca fascicularis) in preclinical immune function safety testing: development of a delayed-type hypersensitivity procedure. Toxicology 95, 103–112.PubMedCrossRefGoogle Scholar
  78. 78.
    Roy, M. J., Wu, M. S., Barr, L. J., Fuller, J. T., Tussey, L. G., Speller, S., et al. (2001) Induction of antigenspecific CD8+ T cells, T helper cells and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine 19, 764–778.CrossRefGoogle Scholar
  79. 79.
    Sonnenblick, M. and Rosin, A. (1991) Cardiotoxicity of interferon: a review of 44 cases. Chest 99, 557–561.PubMedGoogle Scholar
  80. 80.
    Irwin, S. (1968) Comprehensive observational assessment, Ia: A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse. Psychopharmacologia 13, 222–257.PubMedCrossRefGoogle Scholar
  81. 81.
    Buse, E., Habermann, G., Osterburg, I., Korte, R., and Weinbauer, G. F. (2003). Reproductive/developmental toxicity and immunotoxicity assessment in the non-human primate model. Toxicology 185, 221–227.PubMedCrossRefGoogle Scholar
  82. 82.
    Barrow, P. C. (2003) Reproductive toxicology studies and immunotherapeutics. Toxicology 185, 205–212.PubMedCrossRefGoogle Scholar
  83. 83.
    Verdier, F., Barrow, P. C., and Burge, J. (2003) Reproductive toxicity testing of vaccines. Toxicology 185, 213–219.PubMedCrossRefGoogle Scholar
  84. 84.
    Gocke, E., Albertini, S., Brendler-Schwaab, S., Muller, L., Suter, W., and Wurgler, F. E. (1999) Genotoxicity testing of biotechnology-derived products: report of a GUM task force: Gesellschaft fur Umweltmutations-forschung. Mutat. Res. 436, 137–156.PubMedCrossRefGoogle Scholar
  85. 85.
    CMR International Report (2002) Non-clinical safety evaluation of products of Biotechnology: Industry Strategies. CMR International, Epsom, Surrey, UK.Google Scholar
  86. 86.
    Nichols, W. W., Ledwith, B. J., Manam, S. V., and Troilo, P. J. (1995) Potential of DNA vaccine integration into host cell genome. Ann. N.Y. Acad. Sci. 772, 30–39.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Frank R. Brennan
    • 1
  • Leigh Shaw
  • Mark G. Wing
  • Christine Robinson
  1. 1.Huntingdon Life SciencesWoolley Rd, AlconburyHuntingdonUK

Personalised recommendations