Molecular Biotechnology

, Volume 26, Issue 2, pp 147–163

MALDI-TOF mass spectrometry

A versatile tool for high-performance DNA analysis
Review

Abstract

Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) has developed during the past decade into a versatile tool for biopolymer analysis. The aim of this review is to summarize this development and outline the applications, which have been enabled for routine use in the field of nucleic acid analysis. These include the anlaysis of mutations, the resequencing of amplicons with a known reference sequence, and the quantitative analysis of gene expression and allelic frequencies in complex DNA mixtures.

Index Entries

MALDI-TOF SNP analysis genotyping quantitative MALDI-TOF gene-expression analysis resequencing SNP discovery DNA pooling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Takeda, N., Pomerantz, S. C., and McCloskey, J. A. (1991) Detection of ribose-methylated nucleotides in enzymatic hydrolysates of RNA by thermospray liquid chromatography-mass spectrometry. J. Chromatogr. 562, 225–235.PubMedCrossRefGoogle Scholar
  2. 2.
    Viari, A., Ballini, J. P., Meleard, P., et al. (1988) Characterization and sequencing of normal and modified oligonucleotides by 252Cf plasma desorption mass spectrometry. Biomed. Environ. Mass Spectrom. 16, 225–228.PubMedCrossRefGoogle Scholar
  3. 3.
    Karas, M. and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal. Chem. 60, 2299–2301.PubMedCrossRefGoogle Scholar
  4. 4.
    Börnsen, K. O., Gass, M. A. S., Bruin, G. J. M., et al. (1997) Influence of solvents and detergents on matrix-assisted laser desorption/ionization mass spectrometry measurements of proteins and oligonucleotides. Rapid Commun. Mass Spectrom. 11, 603–309.PubMedCrossRefGoogle Scholar
  5. 5.
    Nordhoff, E., Ingendoh, A., Cramer, R., et al. (1992) Matrix-assisted laser desorption/ionization mass spectrometry of nucleic acids with wavelengths in the ultraviolet and infrared. Rapid Commun. Mass Spectrom. 6, 771–776.PubMedCrossRefGoogle Scholar
  6. 6.
    Little, D. P., Braun, A., O’Donnell, M. J., and Koster, H. (1997) Mass spectrometry from miniaturized arrays for full comparative DNA analysis. Nat. Med. 3, 1413–1416.PubMedCrossRefGoogle Scholar
  7. 7.
    Chaurand, P., Luetzenkirchen, F., and Spengler, B. (1999) Peptide and protein identification by matrix-assisted laser desorption ionization (MALDI) and MALDI-post-source decay time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 10, 91–103.PubMedCrossRefGoogle Scholar
  8. 8.
    Griffin, T. J., Goodlett, D. R., and Aebersold, R. (2001) Advances in proteome analysis by mass spectrometry. Curr. Opin. Biotechnol. 12, 607–612.PubMedCrossRefGoogle Scholar
  9. 9.
    Tang, K., Fu, D. J., Kotter, S., Cotter, R. J., Cantor, C. R., and Koster, H. (1995) Matrix-assisted laser desorption/ionization mass spectrometry of immobilized duplex DNA probes. Nucleic Acids Res. 23, 3126–3131.PubMedCrossRefGoogle Scholar
  10. 10.
    Gut, I. G. and Beck, S. (1995) A procedure for selective DNA alkylation and detection by mass spectrometry. Nucleic Acids Res. 23, 1367–1373.PubMedCrossRefGoogle Scholar
  11. 11.
    Pieles, U., Zürcher, W., Schär, M., and Moser, H. E. (1993) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides. Nucleic Acids Res. 21, 3191–3196.PubMedCrossRefGoogle Scholar
  12. 12.
    Lecchi, P. and Pannell, L. K. (1995) 6-Aza-2-thiothymine: a matrix for MALDI spectra of oligonucleotides. J. Am. Soc. Mass Spectrom. 6, 1276–1277.CrossRefGoogle Scholar
  13. 13.
    Jurinke, C., van den Boom, D., Collazo, V., Lüchow, A., Jacob, A., and Koster, H. (1997) Recovery of nucleic acids from immobilized biotin-streptavidin complexes using ammonium hydroxide and applications in MALDI-TOF mass spectrometry. Anal. Chem. 69, 904–910.PubMedCrossRefGoogle Scholar
  14. 14.
    Gross, J., Leisner, A., Hillenkamp, F., et al. (1998) Investigations of the metastable decay of DNA under ultraviolet matrix-assisted laser desorption/ionization conditions with post-source-decay analysis and hydrogen/deuterium exchange. J. Am. Soc. Mass Spectrom. 9, 866–878.PubMedCrossRefGoogle Scholar
  15. 15.
    Nordhoff, E., Cramer, R., Karas, M., et al. (1993) Ion stability of nucleic acids in infrared matrix-assisted laser desorption/ionization mass spectrometry. Nucleic Acids Res. 21, 3347–3357.PubMedCrossRefGoogle Scholar
  16. 16.
    Kirpekar, F., Nordhoff, E., Kristiansen, K., Roepstorff, P., Hahner, S., and Hillenkamp, F. (1995) 7-Deaza purine bases offer a higher ion stability in the analysis of DNA by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 9, 525–531.PubMedCrossRefGoogle Scholar
  17. 17.
    Siegert, C., Jacob, A., and Köster, H. (1996) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the detection of polymerase chain reaction products containing 7-deazapurine moieties. Anal. Biochem. 243, 55–65.PubMedCrossRefGoogle Scholar
  18. 18.
    Wiley, W. C. and McLaren, I. H. (1955) Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 26, 1150.CrossRefGoogle Scholar
  19. 19.
    Wu, K. J., Steding, A., and Becker, C. H. (1993) Matrix-assisted laser desorption time-of-flight mass spectrometry of oligonucleotides using 3-hydroxypicolinic acid as an ultraviolet-sensitive matrix. Rapid Commun. Mass Spectrom. 7, 142–146.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhu, Y. F., Chung, C. N., Taranenko, N. I., et al. (1996) The study of 2,3,4-trihydroxyacetophenone and 2,4,6-trihydroxyacetophenone as matrices for DNA detection in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 10, 383–388.PubMedCrossRefGoogle Scholar
  21. 21.
    Berkenkamp, S., Kirpekar, F., and Hillenkamp, F. (1998) Infrared MALDI mass spectrometry of large nucleic acids. Science 281, 260–262.PubMedCrossRefGoogle Scholar
  22. 22.
    Jannavi, R. Srinivasan, J. R., Liu, Y., et al. (1997) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as a rapid screening method to detect mutations causing Tay-Sachs disease. Rapid Commun. Mass Spectrom. 11, 1144–1150.CrossRefGoogle Scholar
  23. 23.
    Koster, H., van den Boom, D., Braun, A., et al. (1997) DNA analysis by mass spectrometry: applications in DNA sequencing and DNA diagnostics. Nucleosides & Nucleotides 16, 563–571.Google Scholar
  24. 24.
    Jurinke, C., van den Boom, D., and Koster, H. (1998) Asymmetric PCR improves streptavidin-biotin based purification of PCR products prior to MALDI-TOF mass spectrometric analysis. Rapid Comm. Mass Spectrom. 12, 50–52.CrossRefGoogle Scholar
  25. 25.
    Gobom, J., Nordhoff, E., Mirgorodskaya, E., Ekman, R., and Roepstorff, P. (1999) Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 34, 105–116.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu, Y. H., Bai, J., Zhu, Y., et al. (1995) Rapid screening of genetic polymorphisms using buccal cell DNA with detection by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 9, 735–743.PubMedCrossRefGoogle Scholar
  27. 27.
    Faulstich, K., Worner, K., Brill, H., and Engels, J. W. (1997) A sequencing method for RNA oligonucleotides based on mass spectrometry. Anal. Chem. 69, 4349–4353.PubMedCrossRefGoogle Scholar
  28. 28.
    Tang, K., Taranenko, N. I., Allmann, S. L., Ch’ang, L. Y., and Chen, C. H. (1994) Detection of 500-nucleotide DNA by laser desorption mass spectrometry. Rapid Commun. Mass Spectrom. 8, 727–730.PubMedCrossRefGoogle Scholar
  29. 29.
    Jurinke, C., van den Boom, D., Jacob, A., Tang, K., Wörl, R., and Köster, H. (1996) Analysis of ligase chain reaction products via matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry. Anal. Biochem. 237, 174–181.PubMedCrossRefGoogle Scholar
  30. 30.
    Koster, H., Tang, K., Fu, D. J., et al. (1996) A strategy for rapid and efficient DNA sequencing by mass spectrometry. Nat. Biotechnol. 14, 1123–1128.PubMedCrossRefGoogle Scholar
  31. 31.
    Little, D. P., Braun, A., Darnhofer-Demar, B., et al. (1997) Detection of RET proto-oncogene codon 634 mutations using mass spectrometry. J. Mol. Med. 75, 745–750.PubMedCrossRefGoogle Scholar
  32. 32.
    Higgins, G. S., Little, D. P., and Koster, H. (1997) Competitive oligonucleotide single-base extension combined with mass spectrometric detection for mutation screening. Biotechniques 23, 710–714.PubMedGoogle Scholar
  33. 33.
    Jurinke, C., Zöllner, B., Feucht, H. H., et al. (1998) Application of nested PCR and mass spectrometry for DNA-based virus detection: HBV-DNA detected in the majority of isolated anti-HBc positive sera. Genet. Anal. 14, 97–102.PubMedGoogle Scholar
  34. 34.
    Braun, A., Little, D. P., and Köster, H. (1997) Detecting CFTR gene mutations by using primer oligo base extension and mass spectrometry. Clin. Chem. 43, 1151–1158.PubMedGoogle Scholar
  35. 35.
    van den Boom, D., Jurinke, C., Higgins, G. S., Becker, T., and Koster, H. (1998) Mass spectrometric DNA diagnostics. Nucleosides & Nucleotides 17, 2157–2164.CrossRefGoogle Scholar
  36. 36.
    Little, D. P., Braun, A., Darnhofer-Demar, B., and Koster, H. (1997) Identification of apolipoprotein E polymorphisms using temperature cycled primer oligo base extension and mass spectrometry. Eur. J. Clin. Chem. Clin. Biochem. 35, 545–548.PubMedGoogle Scholar
  37. 37.
    Storm, N., Darnhofer-Patel, B., van den Boom, D., and Rodi, C. P. (2003) MALDI-TOF mass spectrometry-based SNP genotyping. Methods Mol. Biol. 212, 241–262.PubMedGoogle Scholar
  38. 38.
    Ross, P., Hall, L., Smirnov, I., and Haff, L. (1998) High-level multiplex genotyping by MALDI-TOF mass spectrometry. Nat. Biotechnol. 16, 1347–1351.PubMedCrossRefGoogle Scholar
  39. 39.
    Sauer, S., Lechner, D., Berlin, K., Lehrach, H., et al. (2000) A novel procedure for efficient genotyping of single nucleotide polymorphisms. Nucleic Acids Res. 28, E13Google Scholar
  40. 40.
    Tost, J., Brandt, O., Boussicault, F., et al. (2002) Molecular haplotyping at high throughput. Nucleic Acids Res. 30, E96Google Scholar
  41. 41.
    Sauer, S., Gelfand, D. H., Boussicault, F., Bauer, K., Reichert, F., and Gut, I. G. (2002) Facile method for automated genotyping of single nucleotide polymorphisms by mass spectrometry. Nucleic Acid Res. 30, E22Google Scholar
  42. 42.
    Griffin, T. J. and Smith, L. M. (2000) Genetic identification by mass spectrometric analysis of single-nucleotide polymorphisms: ternary encoding of genotypes. Anal. Chem. 72, 3298–3302.PubMedCrossRefGoogle Scholar
  43. 43.
    Berggren, W. T., Takova, T., Olson, M. C., Eis, P. S., Kwiatkowski, R. W., and Smith, L. M. (2002) Multiplexed gene expression analysis using the invader RNA assay with MALDI-TOF mass spectrometry detection. Anal. Chem. 74, 1745–1750.PubMedCrossRefGoogle Scholar
  44. 44.
    Dib, C., Faure, S., Fizames, C., et al. (1996) A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154.PubMedCrossRefGoogle Scholar
  45. 45.
    Sunden, S. L., Businga, T., Beck, J., et al. (1996) Chromosomal assignment of 2900 tri- and tetra-nucleotide repeat markers using NIGMS somatic cell hybrid panel 2. Genomics 32, 15–20.PubMedCrossRefGoogle Scholar
  46. 46.
    Epplen, J. T., Buitkamp, J., Epplen, C., Maueler, W., and Riess, O. (1995) Indirect DNA/gene diagnoses via electrophoresis—an obsolete principle? Electrophoresis 16, 683–690.PubMedCrossRefGoogle Scholar
  47. 47.
    Wells, R. D. and Warren, S. T. (1998) Genetic Instabilities and Neurological Diseases. Academic Press, San Diego, CA.Google Scholar
  48. 48.
    Canzian, F., Salovaara, R., Hemminki, A., et al. (1996) Semiautomated assessment of loss of heterozygosity and replication error in tumors. Cancer Res. 56, 3331–3337.PubMedGoogle Scholar
  49. 49.
    Ziegle, J. S., Su, Y., Corcoran, K. P., et al. (1992) Application of automated DNA sizing technology for genotyping microsatellite loci. Genomics 14, 1026–1031.PubMedCrossRefGoogle Scholar
  50. 50.
    Reed, P. W., Davies, J. L., Copeman, J. B., et al. (1994) Chromosome-specific microsatellite sets for fluorescence-based, semi-automated genome mapping. Nat. Genet. 7, 390–395.PubMedCrossRefGoogle Scholar
  51. 51.
    Braun, A., Little, D. P., Reuter, D., Muller-Mysok, B., and Koster, H. (1997) Improved analysis of microsatellites using mass spectrometry. Genomics 46, 18–23.PubMedCrossRefGoogle Scholar
  52. 52.
    Krebs, S., Seichter, D., and Forster, M. (2001) Genotyping of dinucleotide tandem repeats by MALDI mass spectrometry of ribozyme-cleaved RNA transcripts. Nat. Biotechnol. 19, 877–880.PubMedCrossRefGoogle Scholar
  53. 53.
    van den Boom, D., Jurinke, C., McGinness, M. J., and Berkenkamp, S. (2001) Microsatellites: perspectives and potentials of mass spectrometric analysis. Expert Rev. Mol. Diagn. 1, 383–393.PubMedCrossRefGoogle Scholar
  54. 54.
    Kirpekar, F., Nordhoff, E., Larsen, L. K., Krisitansen, K., Roepstorff, P., and Hillenkamp, F. (1998) Rapid determination of short DNA sequences by the use of MALDI-MS. Nucleic Acids Res. 26, 2554–2559.PubMedCrossRefGoogle Scholar
  55. 55.
    Nordhoff, E., Luebbert, C., Thiele, G., Heiser, V., and Lehrach, H. (2000) Rapid determination of short DNA sequences by the use of MALDI-MS. Nucleic Acids Res. 28, E86Google Scholar
  56. 56.
    Taranenko, N. I., Allman, S. L., Golovlev, V. V., Taranenko, N. V., Isola, N. R., and Chen, C. H. (1998) Sequencing DNA using mass spectrometry for ladder detection. Nucleic Acids Res. 26, 2488–2490.PubMedCrossRefGoogle Scholar
  57. 57.
    Maxam, A. M. and Gilbert, W. (1977) A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74, 560–564.PubMedCrossRefGoogle Scholar
  58. 58.
    von Wintzingerode, F., Bocker, S., Schlotelburg, C., et al. (2002) Base-specific fragmentation of amplified 16S rRNA genes analyzed by mass spectrometry: a tool for rapid bacterial identification. Proc. Natl. Acad. Sci. USA 99, 7039–7044.CrossRefGoogle Scholar
  59. 59.
    Elso, C., Toohey, B., Reid, G. E., Poetter, K., Simpson, R. J., and Foote, S. J. (2002) Mutation detection using mass spectrometric separation of tiny oligonucleotide fragments. Genome Res. 12, 1428–1433.PubMedCrossRefGoogle Scholar
  60. 60.
    Shchepinov, M. S., Denissenko, M. F., Smylie, K. J., et al. (2001) Matrix-induced fragmentation of P3′-N5′ phosphoramidate-containing DNA: high-throughput MALDI-TOF analysis of genomic sequence polymorphisms. Nucl. Acids Res. 25, 3864–3872.CrossRefGoogle Scholar
  61. 61.
    Hahner, S., Ludemann, H. C., Kirpekar, F., et al. (1997) Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) of endonuclease digests of RNA. Nucleic Acids Res. 25, 1957–1964.PubMedCrossRefGoogle Scholar
  62. 62.
    Krebs, S., Medugorac, I., Seichter, D., and Forster, M. (2003) RNaseCut: a MALDI mass spectrometry-based method for SNP discovery. Nucl. Acids Res. 31, E37Google Scholar
  63. 63.
    Hartmer, R., Storm, N., Boecker, S., et al. (2003) RNase T1 mediated base-specific cleavage and MALDI-TOF MS for high-throughput comparative sequence analysis. Nucl. Acids Res., 31, E47.Google Scholar
  64. 64.
    Buetow, K. H., Edmonson, M., MacDonald, R., et al. (2001) High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc. Natl. Acad. Sci. USA 98, 581–584.PubMedCrossRefGoogle Scholar
  65. 65.
    Werner, M., Sych, M., Herbon, N., Illig, T., Konig, I. R., and Wjst, M. (2002) Large-scale determination of SNP allele frequencies in DNA pools using MALDI-TOF mass spectrometry. Human Mutation 20, 57–64.PubMedCrossRefGoogle Scholar
  66. 66.
    Mohlke, K. L., Erdos, M. R., Scott, L. J., et al. (2002) High-throughput screening for evidence of association by using mass spectrometry genotyping on DNA pools. Proc. Natl. Acad. Sci. USA 99, 16,928–16,933.CrossRefGoogle Scholar
  67. 67.
    Ding, C. and Cantor, C. R. (2003) A high-throughput gene expression analysis technique using competitive PCR and matrix-assisted laser desorption ionization time-of-flight MS. Proc. Natl. Acad. Sci. USA 100, 3059–3064.PubMedCrossRefGoogle Scholar
  68. 68.
    Ross, P., Hall, L., and Haff, L. A. (2000) Quantitative approach to single-nucleotide polymorphism analysis using MALDI-TOF mass spectrometry. Biotechniques 29, 620–626.PubMedGoogle Scholar
  69. 69.
    Le Hellard, S., Ballereau, S. J., Visscher, P. M., et al. (2002) SNP genotyping on pooled DNAs: comparison of genotyping technologies and a semi-automated method for data storage and analysis. Nucleic Acids Res. 30, E74.Google Scholar
  70. 70.
    Shifman, S., Pisante-Shalom, A., Yakir, B., and Darvasi, A. (2002) Quantitative technologies for allele frequency estimation of SNPs in DNA pools. Mol. Cell. Probes 16, 429–434.PubMedCrossRefGoogle Scholar
  71. 71.
    Sham, P., Bader, J. S., Craig, I., O’Donovan, M., and Owen, M. (2002) DNA pooling: a tool for large-scale association studies. Nat. Rev. Genet. 3, 862–871.PubMedCrossRefGoogle Scholar
  72. 72.
    Barratt, B. J., Payne, F., Rance, H. E., Nutland, S., Todd, J. A., and Clayton, D. G. (2002) Identification of the sources of error in allele frequency estimations from pooled DNA indicates an optimal experimental design. Ann. Hum. Genet. 66, 393–405.PubMedCrossRefGoogle Scholar
  73. 73.
    Knight, J. C., Keating, B. J., Rockett, K. A., and Kwiatkowski,, P. D. (2003) In vivo characterization of regulatory polymorphisms by allele-specific quantitation of RNA polymerase loading. Nat. Genet. 33, 469–475.PubMedCrossRefGoogle Scholar
  74. 74.
    Cardon, L. R. and Bell, J. I. (2001) Association study designs for complex disease. Nat. Rev. Genet. 2, 91–99.PubMedCrossRefGoogle Scholar
  75. 75.
    Tabor, H. K., Risch, N. J., and Myer, R. M. (2002) Candidate-gene approaches for studying complex traits: practical considerations. Nat. Rev. Genet. 3, 391–397.PubMedCrossRefGoogle Scholar
  76. 76.
    Bansal, A., van den Boom, D., Kammerer, S., et al. (2002) Association testing by DNA pooling—an effective initial screen. Proc. Natl. Acad. Sci. USA 99, 16,871–16,874.CrossRefGoogle Scholar
  77. 77.
    Kammerer, S., Burns-Hamuro, L., Ma, Y., et al. (2003) Amino acid variant in the kinase binding domain of dual-specific A kinase-anchoring protein 2, a disease susceptibility polymorphism. Proc. Natl. Acad. Sci. USA 100, 4066–4071.PubMedCrossRefGoogle Scholar
  78. 78.
    Jurinke, C., van den Boom, D., Cantor, C. R., and Köster, H. (2002) Automated genotyping using DNA mass-ARRAY technology. Methods Mol. Biol. 187, 179–192.PubMedGoogle Scholar
  79. 79.
    Amexis, G., Oeth, P., Abel, K., et al. (2001) Quantitative mutant analysis of viral quasispecies by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc. Natl. Acad. Sci. USA 98, 12,097–12,102.CrossRefGoogle Scholar
  80. 80.
    Bucknall, M., Fung, K. Y. C., and Duncan, M. W. (2002) Practical quantitative biomedical applications of MALDI-TOF mass spectrometry. J. Am. Soc. Mass Spectrom. 13, 1015–1027.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Christian Jurinke
    • 1
  • Paul Oeth
  • Dirk van den Boom
  1. 1.Sequenom, Inc., Johns Hopkins CourtSan Diego

Personalised recommendations