Molecular Biotechnology

, Volume 25, Issue 1, pp 53–61 | Cite as

Mimotopes of tumor-associated T-cell epitopes for cancer vaccines determined with combinatorial peptide libraries

  • Tumenjargal Sherev
  • Karl-Heinz Wiesmüller
  • Peter Walden
Protocol

Abstract

Cytotoxic T-cells are the most important effector cells in immune responses against tumors. The identification of tumor-associated epitopes for these cells, therefore, has become a key aspect of the development of cancer vaccines. Here, we describe a new approach to the determination of tumor-associated T-cell epitopes which employs combinatorial peptide libraries with singly defined sequence positions in a randomized context. The analysis of the responses of a T-cell clone to these libraries yields the amino acid constituents of the epitope which can be combined to obtain mimotopes that are suitable as vaccine antigens for the induction of tumor-specific responses.

Index Entries

Brefeldin-A combinatorial peptide library SEREX, serological analysis of tumor antigens by recombinant cDNA expression cloning TAA, tumor-associated antigen TATE, tumor-associated T-cell epitope 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Renkvist, N., Castelli, C., Robbins, P. F., and Parmiani, G. (2001) A listing of human tumor antigens recognized by T-cells. Cancer Immunol Immunother. 50, 3–15.PubMedCrossRefGoogle Scholar
  2. 2.
    Castelli, C., Storkus, W. J., Maeurer, M. J., et al. (1995) Mass spectrometric identification of a naturally processed melanoma peptide recognized by CD8+ cytotoxic T lymphocytes. J. Exp. Med. 181, 363–368.PubMedCrossRefGoogle Scholar
  3. 3.
    Tureci, O., Sahin, U., Schobert, I., et al. (1996) The SSX-2 gene, which is involved in the t(X; 18) translocation of synovial sarcomas, codes for the human tumor antigen HOM-MEL-40. Cancer Res. 56, 4766–4772.PubMedGoogle Scholar
  4. 4.
    De Plaen, E., Lurquin, C., Brichard, V., et al. (1997) Cloning of genes coding for antigens recognized by cytolytic T lymphocytes. In: The Immunology Methods Manual. (Lefkovits, I., ed.), Academic Press Ltd., New York, pp. 692–718.Google Scholar
  5. 5.
    Walden, P., Wiesmüller, K. H. and Jung, G. (1995) Elucidation of T-cell epitopes: A synthetic approach with random peptide libraries. Biochem. Soc. Trans. 23, 678–681.PubMedGoogle Scholar
  6. 6.
    Rammensee, H. G., Bachmann, J. and Stevanovic, S. (1997) MHC Ligands and Peptide Motifs. Landes Bioscience, Georgetown, TX.Google Scholar
  7. 7.
    Gundlach, B. R., Wiesmüller, K. H., Junt, T., et al. (1996) Determination of T-cell epitopes with random peptide libraries. J. Immunol. Methods 192, 149–155.PubMedCrossRefGoogle Scholar
  8. 8.
    Walden, P. (1996) T-cell epitope determination. Curr. Opin. Immunol. 8, 68–74.PubMedCrossRefGoogle Scholar
  9. 9.
    Rubio-Godoy, V., Ayyoub, M., Dutoit, V., et al. (2002) Combinatorial peptide library-based identification of peptide ligands for tumor-reactive cytolytic T lymphocytes of unknown specificity. Eur. J. Immunol. 32, 2292–2299.PubMedCrossRefGoogle Scholar
  10. 10.
    Furka, A. (1996) Chemical synthesis of peptide libraries. In: Combinatorial Peptide and Nonapeptide Libraries. (Jung, G. ed.), VCH Verlagsgesellschaft mbH, Weinheim, Germany.Google Scholar
  11. 11.
    Kern, F., Surel, I. P., Brock, C., et al. (1998) T-cell epitope mapping by flow cytometry. Nat. Med. 4, 975–978.PubMedCrossRefGoogle Scholar
  12. 12.
    Linnemann, T., Tumenjargal, S., Gellrich, S., et al. (2001) Mimotopes for tumor-specific T lymphocytes in human cancer determined with combinatorial peptide libraries. Eur. J. Immunol. 1, 156–165.CrossRefGoogle Scholar
  13. 13.
    Hiemstra, H. S., Duinkerken, G., Benckhuijsen, W. E., et al. (1997) The identification of CD4+ T-cell epitopes with dedicated synthetic peptide libraries. Proc. Nat. Acad. Sci. USA. 94, 10,313–10,318.CrossRefGoogle Scholar
  14. 14.
    Wilson, D. B., Pinilla, C., Wilson, D. H., et al. (1999) Immunogenicity. I. Use of peptide libraries to identify epitopes that activate clonotypic CD4+ T-cells and induce T-cell responses to native peptide ligands. J. Immunol. 163, 6424–6434.PubMedGoogle Scholar
  15. 15.
    Gundlach, B. R., Wiesmüller, K.-H., Junt, T., et al. (1996) Specificity and degeneracy of minor histocompatibility antigen-specific MHC-restricted cytotoxic T lymphocytes. J. Immunol. 156, 3645–3651.PubMedGoogle Scholar
  16. 16.
    Boesteanu, A., Brehm, M., Mylin, L. M., et al. (1998) A molecular basis for how a single TCR interfaces multiple Ligands. J. Immunol. 161, 4719–4727.PubMedGoogle Scholar
  17. 17.
    Hemmer, B., Fleckenstein, B. T., Vergelli, M., et al. (1997) Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T-cell clone. J. Exp. Med. 185, 1651–1659.PubMedCrossRefGoogle Scholar
  18. 18.
    Udaka, K., Wiesmüller, K.-H., Kienle, S., et al. (1996) Self-MHC restricted peptides recognized by an allo MHC-responsive CTL clone. J. Immunol. 157, 670–678.PubMedGoogle Scholar
  19. 19.
    Dressel, A., Chin, J. L., Sette, A., et al. (1997) Autoantigen recognition by human CD8 T-cell clones: enhanced agonist response induced by altered peptide ligands. J. Immunol. 159, 4943–4951.PubMedGoogle Scholar
  20. 20.
    La Rosa, C., Krishnan, R., Markel, S., et al. (2001) Enhanced immune activity of cytotoxic T-lymphocyte epitope analogs derived from positional scanning synthetic combinatorial libraries. Blood 97, 1776–1786.PubMedCrossRefGoogle Scholar
  21. 21.
    Hemmer, B., Pinilla, C., Gran, B., et al. (2000) Contribution of individual amino acids within MHC molecule or antigenic peptide to TCR ligand potency. J. Immunol. 164, 861–871.PubMedGoogle Scholar
  22. 22.
    Udaka, K., Wiesmüller, K. H., Kienle, S., et al. (1995) Tolerance to amino acid variations in peptides binding to the major histocompatibility complex class I protein H-2Kb. J. Biol. Chem. 270, 24,130–24,134.Google Scholar
  23. 23.
    Jung, C., Kalbus, M., Fleckenstein, B., et al. (1998) New ligands for HLA DRB1 *0301 by random selection of favourable amino acids ranked by competition studies with undecapeptide amide sublibraries. J. Immunol. Methods 219, 139–149.PubMedCrossRefGoogle Scholar
  24. 24.
    Agnes, M. C., Tan, A., Jordens, R., et al. (1998) Strongly increased efficiency of altered peptide ligands by mannosylation. Int. Immunol. 10, 1299–1304.PubMedCrossRefGoogle Scholar
  25. 25.
    Ostankovitch, M., Guichard, G., Connan, F., et al. (1998) A partially modified retro-inverso pseudopeptide modulates the cytokine profile of CTL specific for an influenza virus epitope. J. Immunol. 161, 200–208.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Tumenjargal Sherev
    • 1
  • Karl-Heinz Wiesmüller
    • 2
  • Peter Walden
    • 1
  1. 1.Department of Dermatology and Allergy, Medical Faculty CharitéHumboldt UniversityBerlinGermany
  2. 2.EMC Microcollections GmbH and Institute of Organic ChemistryTübingenGermany

Personalised recommendations