Advertisement

Molecular Biotechnology

, Volume 23, Issue 3, pp 213–224 | Cite as

Intellectual property law

A primer for scientists
  • William M. Brown
Review

Abstract

“Intellectual property” (IP) is a generic legal term for patents, copyrights, and trademarks, which provide legal rights to protect ideas, the expression of ideas, and the inventors and creators of such ideas. A patent provides legal protection for a new invention, an application of a new idea, discovery, or concept that is useful. Copyright provides legal protection from copying for any creative work, as well as business and scientific publications, computer software, and compilations of information. A trademark provides rights to use symbols, particular words, logos, or other markings that indicate the source of a product or service. A further method of benefiting from an invention is simply to keep it secret, rather than to disclose it—a “trade secret.” IP impinges on almost everything scientists do. As scientists are paid to come up with ideas and aspire to patent and/or publish their work, the protection of ideas and of written works especially should be of interest and concern to all.

Index Entries

Intellectual property patent copyright trademark trade secret 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marshall, P. (1997) Guarding the wealth of nations. Intellectual property, copyright, and international trade and relations. Wilson Quarterly 21, 64–100.Google Scholar
  2. 2.
    Coca-Cola Bottling Co. of Shreveport, Inc. v. The Coca-Cola Co., 563 F.Supp. 1122 (D.Del. 1983).Google Scholar
  3. 3.
    Coca-Cola Bottling Co. of Shreveport, Inc. v. The Coca-Cola Co., 107 F.Supp. 288 (D.Del. 1985).Google Scholar
  4. 4.
    US Patent No. 4,683,195. Process for amplifying, detecting, and/or cloning nucleic acid sequences.Google Scholar
  5. 5.
    US Patent No. 4,683,202. Process for amplifying nucleic acid sequences.Google Scholar
  6. 6.
    Hoffman, M. (1992) Roche eases PCR restrictions. Science 255, 528.PubMedCrossRefGoogle Scholar
  7. 7.
    Dickson, D. (1993) Licenses sought from PCR users in Britain. Nature 361, 291.PubMedGoogle Scholar
  8. 8.
    Barinaga, M. (1995) Scientists named in PCR suit. Science 268, 1273–1274.PubMedCrossRefGoogle Scholar
  9. 9.
    Cohen, J. (1997) May I see your license, please? PCR patent tangle slows quick assay of HIV levels. Science 276, 1488–1491.PubMedCrossRefGoogle Scholar
  10. 10.
    Teets v. Chromalloy Gas Turbine Corp., 83 F.3d 403 (Fed.Cir. 1996).Google Scholar
  11. 11.
    Goodwin, C.D. (1996) Technology transfer at US universities: seeking public benefit from the results of basic research. Technol. Health Care 4, 323–330PubMedGoogle Scholar
  12. 12.
    Bertha, S.L. (1996) Academic research: policies and practice. J. Ethnopharmacol. 51, 59–73PubMedCrossRefGoogle Scholar
  13. 13.
    Fox, J.L. (1984) Gene splicers square off in patent courts. Science 234, 584–586.CrossRefGoogle Scholar
  14. 14.
    Blecher, M. (1988) Dominating patents: a view from the bridge. Clin. Chem. 34, 1705–1709.PubMedGoogle Scholar
  15. 15.
    Sugawara, S. (1991) Drug patent race heads to the bench. Washington Post, Sept. 15, p. H1.Google Scholar
  16. 16.
    Wade, N. (1980) Supreme Court hears argument on patenting life forms. Science 208, 31–32.CrossRefGoogle Scholar
  17. 17.
    Wade, N. (1980) Court says lab-made life can be patented. Science 208, 1445.PubMedCrossRefGoogle Scholar
  18. 18.
    Greenhouse, L. (1980) Science may patent new forms of life, justices rule, 5 to 4: dispute on bacteria; decision assists industry in bioengineering in a variety of projects. New York Times, June 16, p. A1.Google Scholar
  19. 19.
    Diamond v. Chakrabarty, 447 U.S. 303 (1980).Google Scholar
  20. 20.
    US Patent No. 4,237,224. Process for producing biologically functional molecular chimeras.Google Scholar
  21. 21.
    Dickson, D. (1980) Stanford and UCLA [sic; UCSF] plasmid patent. Nature 288, 527–528.PubMedGoogle Scholar
  22. 22.
    Beardsley, T. (1984) Cohen-Boyer patent finally confirmed. Nature 311, 3.PubMedGoogle Scholar
  23. 23.
    US Patent No. 4,366,246. Method for microbial polypeptide expression.Google Scholar
  24. 24.
    Ezzell, C (1987) Patent Office decision puts Genentech out in front. Nature 330, 97.PubMedGoogle Scholar
  25. 25.
    Norman, C. (1985) Patent dispute divides AIDS researchers. Science 230, 640–642.PubMedCrossRefGoogle Scholar
  26. 26.
    Barnes, D.M. (1987) AIDS patent dispute settled. Science 236, 17.PubMedCrossRefGoogle Scholar
  27. 27.
    Ezzell, C. (1988) Genentech patent. Nature 335, 105.Google Scholar
  28. 28.
    Ezzell, C. (1988) Genentech gets patent protection for tissue plasminogen activator. Nature 333, 790.PubMedGoogle Scholar
  29. 29.
    Swinbanks, D. (1988) Problems over TPA patent for Genentech in Japan. Nature 333, 587.PubMedGoogle Scholar
  30. 30.
    Swinbanks, D. (1994) Single amino-acid makes a big difference in patent court. Nature 372, 123.PubMedGoogle Scholar
  31. 31.
    Johnston, K. (1987) TPA patent battle continues in court. Nature 327, 546.PubMedGoogle Scholar
  32. 32.
    Gershon, D. (1990) Genentech wins round two. Nature 344, 692.PubMedGoogle Scholar
  33. 33.
    Ezzell, C. (1987) Judge confirms injunction in sandwich assay patent suit. Nature 326, 532.PubMedGoogle Scholar
  34. 34.
    Greene, H.E., Jr. and Duft, B.J. (1990) Disputes over monoclonal antibodies. Nature 347, 117–118.PubMedCrossRefGoogle Scholar
  35. 35.
    Hybritech, Inc. v. Monoclonal Antibodies, Inc., 802 F.2d 1367 (Fed.Cir. 1986)Google Scholar
  36. 36.
    US Patent No. 4,873,191. Genetic transformation of zygotes.Google Scholar
  37. 37.
    McGourty, C. (1989) Microinjection patent granted. Nature 341, 681.Google Scholar
  38. 38.
    Anon (1989) DNX gains rights to fundamental patent for DNA microinjection. Biotechnology Newswatch 9, 1.Google Scholar
  39. 39.
    Egrie, J. (1990) The cloning and production of recombinant human erythropoietin. Pharmacotherapy 10, 3S-8S.PubMedGoogle Scholar
  40. 40.
    Gershon, D. (1990) Amgen plays for time. Nature 344, 800.Google Scholar
  41. 41.
    Gershon, D. (1990) EPO licensing talks break down. Nature 343, 500.PubMedGoogle Scholar
  42. 42.
    Amgen, Inc. v. Chugai Pharmaceutical Co. Ltd., 13 U.S.P.Q.2d 1737 (D.Mass. 1990).Google Scholar
  43. 43.
    Amgen, Inc. v. Chugai Pharmaceutical Co. Ltd., 927 F.2d 1200 (Fed.Cir. 1991).Google Scholar
  44. 44.
    US Patent No. 4,703,008. DNA sequences encoding erythropoietin.Google Scholar
  45. 45.
    US Patent No. 4,677,195. Homogeneous erythropoietin.Google Scholar
  46. 46.
    Gershon, D. (1990) Market machinations. Nature 344, 800.Google Scholar
  47. 47.
    Rotman, D. (1991) Xoma wins patent battle. Chemical Week, Nov. 6, p. 9.Google Scholar
  48. 48.
    Shnabel, J. (1992) The magic bullet that burst the bubble; monoclonal antibodies against Gram-negative sepsis. New Scientist 135, 31–35.Google Scholar
  49. 49.
    Barnum, A. (1992) Xoma, Centocor settle biotech patent battle. San Francisco Chronicle, July 30, p. E1.Google Scholar
  50. 50.
    Anon (1991) Centocor infringes Xoma sepsis patent. Biotech. Patent News 5, 1–2.Google Scholar
  51. 51.
    Stone (1994) Search for sepsis drugs goes on despite failures. Science 264, 365–367.PubMedCrossRefGoogle Scholar
  52. 52.
    Anderson, C. (1993) Court favors drug ‘concept’ over proof. Science 261, 545.PubMedCrossRefGoogle Scholar
  53. 53.
    Kolata, G. (1987) Imminent marketing of AZT raises problems; toxicity. Science 235, 1462–1463.PubMedCrossRefGoogle Scholar
  54. 54.
    Palca, J. (1991) Who found AZT works for AIDS? Patent dispute between the National Institutes of Health and Burroughs Wellcome. Science 251, 1554.PubMedCrossRefGoogle Scholar
  55. 55.
    Palca, J. (1991) Monopoly patents on AZT challenged. Science 252, 1369.Google Scholar
  56. 56.
    Greenhouse, L. (1996) Justices reject challenge of patent for AIDS drug. New York Times, Jan. 17, p. A14.Google Scholar
  57. 57.
    Ackiron, E. (1991) Patents for critical pharmaceuticals; the AZT case. Am. J. Law and Med. 17, 145–155.Google Scholar
  58. 58.
    Cochrane, J.M.T. (2000) Zidovudine’s patent history. Lancet 356, 1611–1612PubMedCrossRefGoogle Scholar
  59. 59.
    Barinaga, M. (1991) Biotech nightmare: does Cetus own PCR? Science 251, 739–740.PubMedCrossRefGoogle Scholar
  60. 60.
    Barinaga, M. (1991) And the winner: Cetus does own PCR. Science 251, 1174.PubMedCrossRefGoogle Scholar
  61. 61.
    Schaefer, E. (1991) Cetus retains PCR patents. Nature 350, 6.PubMedGoogle Scholar
  62. 62.
    E.I. Du Pont de Nemours and Co. v. Cetus Corp., 19 U.S.P.Q.2d 1174 (N.D.Cal. 1990).Google Scholar
  63. 63.
    Dickman, S. (1989) Oncomouse seeks European protection. Nature 340, 85.Google Scholar
  64. 64.
    Dickman, S. (1990) Mouse patent a step closer. Nature 347, 606.Google Scholar
  65. 65.
    Dickson, D. (1989) No patent for Harvard’s mouse? Science 243, 1003.PubMedCrossRefGoogle Scholar
  66. 66.
    Abbott, A. (1993) Protestors target European animal patents. Nature 361, 103.PubMedGoogle Scholar
  67. 67.
    Seide, R.K. and Giaccio, A. (1995) Patenting animals. Chemistry and Industry 16, 656–658.Google Scholar
  68. 68.
    Spurgeon, D. (1998) Harvard’s ‘Oncomouse’ fails to win Canadian patent. Nature 393, 506.PubMedCrossRefGoogle Scholar
  69. 69.
    Editorial (1992) Gene patents. Nature 359, 348.Google Scholar
  70. 70.
    Anderson, C. (1992) NIH cDNA patent rejected: backers want to amend law. Nature 359, 263.PubMedGoogle Scholar
  71. 71.
    Sgaramella, V. (1993) Lawyers’ delight and geneticists’ nightmares: at forty, the double helix shows some wrinkles. Gene 135, 299–302.PubMedCrossRefGoogle Scholar
  72. 72.
    Zinder, N.D. (1993) Patenting cDNA 1993: efforts and happenings. Gene 135, 295–298.PubMedCrossRefGoogle Scholar
  73. 73.
    Roberts, L. (1992) Top HHS lawyer seeks to block NIH. Science 258, 209–210.PubMedCrossRefGoogle Scholar
  74. 74.
    Healy, B. (1992) Special report on gene patenting. New Engl. J. Med. 327, 664–668.PubMedGoogle Scholar
  75. 75.
    Kiley, T.D. (1992) Patents on random complementary DNA fragments. Science 257, 915–918.PubMedCrossRefGoogle Scholar
  76. 76.
    Adler, R.G. (1992) Genome research: fulfilling the public’s expectations for knowledge and commericalization. Science 257, 908–914.PubMedCrossRefGoogle Scholar
  77. 77.
    Eisenberg, R.S. (1992) Genes, patents, and product development. Science 257, 903–908.PubMedCrossRefGoogle Scholar
  78. 78.
    Looney, B. (1994) Should genes be patented? The gene patenting controversy: legal, ethical, and policy foundations of an international agreement. Law and Policy in Int’l. Bus. 26, 231–272.Google Scholar
  79. 79.
    Lech, K.F. (1993) Human genes without functions: biotechnology tests the patent utility standard, Suffolk Univ. Law Review 27, 1631–1660.Google Scholar
  80. 80.
    Eisenberg, R.S. and Merges, R.P. (1995) Opinion letter as to the patentability of certain inventions associated with the identification of partial cDNA sequences. AIPLA Q. J. 23, 1–52.Google Scholar
  81. 81.
    Riley, P.J. (1994) Patenting Dr. Venter’s genetic findings: Is the National Institutes of Health creating hurdles or clearing the path for biotechnology’s voyage into the twenty-first century? J. Contemp. Health Law and Policy 10, 309–326.Google Scholar
  82. 82.
    Aldhous, P. (1993) PCR enzyme patent challenged. Science 260, 486.PubMedGoogle Scholar
  83. 83.
    Abbott, A. (1996) Roche faces charges over Taq patent claim. Nature 382, 660.PubMedGoogle Scholar
  84. 84.
    Dickson, D. (1994) Promega files court challenge to Roche’s Taq enzyme patent. Nature 372, 714.PubMedGoogle Scholar
  85. 85.
    White, T.J. (2000) Why Roche deserves the disputed Taq patent. Nature 403, 825–826.PubMedCrossRefGoogle Scholar
  86. 86.
    Dalton, R. (1999) Roche’s Taq patent ‘obtained by deceit,’ rules US court. Nature 402, 709PubMedCrossRefGoogle Scholar
  87. 87.
    Dalton, R. (2001) Patent ruling could cut PCR enzyme prices. Nature 411, 622PubMedCrossRefGoogle Scholar
  88. 88.
    Service, R.F. (1999) Taq polymerase patent ruled invalid. Science 286, 2251–53PubMedCrossRefGoogle Scholar
  89. 89.
    Slind-Flor, V. (1995) Chiron challenged on hepatitis-C patent. Science 267, 23.PubMedCrossRefGoogle Scholar
  90. 90.
    Genentech, Inc. v. Chiron Corp., 112 F.3d 495 (Fed.Cir. 1997).Google Scholar
  91. 91.
    Anon (1997) Patent law. BioPharm, May 1997, p. 12.Google Scholar
  92. 92.
    Novo Nordisk of North America, Inc., v. Genentech, Inc., 77F.3d 1364 (Fed.Cir. 1996).Google Scholar
  93. 93.
    Genentech, Inc. v. Novo Nordisk, A/S, 108 F.3d 1361 (Fed.Cir. 1997).Google Scholar
  94. 94.
    Dalton, R. (1999) US jury split over hormone patent case… Nature 399, 512PubMedCrossRefGoogle Scholar
  95. 95.
    Dalton, R. (1999) Charges fly in $ 1bn hormone patent battle. Nature 399, 289PubMedCrossRefGoogle Scholar
  96. 96.
    Barinaga M. (1999) No winners in patent shootout. Science 284, 1752–53PubMedCrossRefGoogle Scholar
  97. 97.
    Marx, J. (1996) A second breast cancer susceptibility gene found; BRCA2. Science 271, 30.PubMedCrossRefGoogle Scholar
  98. 98.
    Marshall, E. (1997) The battle of BRCA1 goes to court; BRCA2 may be next. Science 278, 1874.PubMedCrossRefGoogle Scholar
  99. 99.
    Butler, D. and Goodman, S. (2001) French researchers take a stand against cancer gene patent. Nature 413, 95–96PubMedCrossRefGoogle Scholar
  100. 100.
    Wadman, M. (2000) US court tests the breadth of patent protection on proteins. Nature 404, 532PubMedCrossRefGoogle Scholar
  101. 101.
    Kauffman, S.A. (1999) Patent amplification. Nature Biotech. 17, 408 [letter to the editor]CrossRefGoogle Scholar
  102. 102.
    Campell, C. (1999) Patent amplification. Nature Biotech. 17, 408 [letter to the editor]CrossRefGoogle Scholar
  103. 103.
    Dove, A. (2000) Opinions evolve on Kauffman patent. Nature Biotech. 18, 373CrossRefGoogle Scholar
  104. 104.
    US Patent No. 5,723,323. Method of identifying a stochastically-generated peptide, polypeptide, or protein having ligand binding property and compositions thereof.Google Scholar
  105. 105.
    Baleta A. (2001) Drug firms lose patent rights lawsuit against South Africa’s government. Lancet 357, 1347PubMedCrossRefGoogle Scholar
  106. 106.
    Dalton, R. (2000) Patent suit on Alzheimer’s mouse rejected… Nature 405, 989PubMedCrossRefGoogle Scholar
  107. 107.
    Dickson, D. (2000) Affymetrix loses first round of patent battle. Nature 404, 697.CrossRefGoogle Scholar
  108. 108.
    Fox, J.L. (2001) Canadian farmer found guilty of Monsanto canola patent infringement. Nature Biotech. 18, 396–397CrossRefGoogle Scholar
  109. 109.
    Melzer, D. (1998) Patent protection for medical technologies; why some and not others? Lancet 351, 518–519PubMedCrossRefGoogle Scholar
  110. 110.
    Brewer, C. (1998) Patent protection for medical technologies. Lancet 351, 1591–1592PubMedCrossRefGoogle Scholar
  111. 111.
    Shulman, S. (1999) Staking a claim on medical knowledge. The patent profusion. Minn. Med. 82, 12–19PubMedGoogle Scholar
  112. 112.
    Antonuk, L.E., Sprawls, P., and Hendee, W.R. (1999) Medical physicists should seek patent protection for new ideas before publishing articles about them. Med. Phys. 26, 2220–2222PubMedCrossRefGoogle Scholar
  113. 113.
    Marshall, E. (2000) Biotech giants butt heads over cancer drug. Science 288, 2303PubMedCrossRefGoogle Scholar
  114. 114.
    Malakoff, D. (2000) Patent prompts Rochester to sue for slice of drug profits. Science 288, 410–411PubMedCrossRefGoogle Scholar
  115. 115.
    Anon (2001) Patent protection versus public health. Lancet 358, 1563CrossRefGoogle Scholar
  116. 116.
    Malakoff, D. (2001) Will a smaller genome complicate the patent chase? Science 291, 1194PubMedCrossRefGoogle Scholar
  117. 117.
    Saegusa A. (1999) Japan joins efforts to patent cDNA clones. Nature 401, 520PubMedCrossRefGoogle Scholar
  118. 118.
    Robertson, D. (1999) EST patent granted for human kinase homologs. Nature Biotech. 17, 125CrossRefGoogle Scholar
  119. 119.
    Reichhardt, T. (1998) Patent on gene fragment sends researchers a mixed message… Nature 396, 499PubMedCrossRefGoogle Scholar
  120. 120.
    Gold, E.R. (2000) Moving the gene patent debate forward. Nature Biotech. 18, 1319–1320CrossRefGoogle Scholar
  121. 121.
    Sherrid, P. (2001) It’s all about cures and cash. US News World Report, Jan. 8, 35–36Google Scholar
  122. 122.
    Forman D.S. and Diner, B.C. (2001) Emerging new biotechnologies and the patent attorneys’ struggle to best protect them. Trends Biotech. 19, 4–5CrossRefGoogle Scholar
  123. 123.
    Reynolds, T. (2000) Pricing human genes: the patent rush pushes on. J. Nat’sl Cancer Inst. 92, 96–97CrossRefGoogle Scholar
  124. 124.
    Reynolds, T. (2000) Gene patent race speeds ahead amid controversy, concern. J.Nat’l Cancer Inst. 92, 184–186.CrossRefGoogle Scholar
  125. 125.
    Senior, K. (2000) Patent and be damned: the new slogan for human genetics? Mol. Med. Today 6, 255–256PubMedCrossRefGoogle Scholar
  126. 126.
    Caulfield, T.A. and Gold, E.R. (2000) Genetic testing, ethical concerns, and the role of patent law. Clin. Genet. 57, 370–375PubMedCrossRefGoogle Scholar
  127. 127.
    Anon (1999) The scramble to patent human genes. Nat. Neurosci. 2, 773CrossRefGoogle Scholar
  128. 128.
    Schonmann, A. (1998) From make believe to doomsday eve: or should we patent genes? Med. Law 17, 455–476PubMedGoogle Scholar
  129. 129.
    Praiss, D.M. (2001) Creating a winning patent portfolio. Nature Biotech. 19 (suppl.), BE5-BE7CrossRefGoogle Scholar
  130. 130.
    Gogoris, A.C. and Clarke, P.J. (2001) Patent due diligence in biotechnology transactions. Nature Biotech. 19, 279–281CrossRefGoogle Scholar
  131. 131.
    DiMasi, J.A., Hansen, R.W., Grabowski, H.G., and Lasagna, L. (1995) Research and development costs for new drugs by therapeutic category. A study of the US pharmaceutical industry. Pharmacoeconomics 7, 152–169PubMedCrossRefGoogle Scholar
  132. 132.
    Köhler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibodies of predefined specificity. Nature 256, 495–497.PubMedCrossRefGoogle Scholar
  133. 133.
    Uhr, J.W. (1984) The 1984 Nobel Prize in medicine. Science 226, 1025–1028.PubMedCrossRefGoogle Scholar
  134. 134.
    Köhler, G. (1984) Derivation and diversification of monoclonal antibodies. Scand. J. Immunol. 37, 117–129.Google Scholar
  135. 135.
    Cohen, S.N., Chang, A.C.Y., Boyer, H.W., and Helling, R.B. (1993) Construction of biologically functional bacterial plasmids in vitro. Proc. Natl. Acad. Sci. USA 70, 3240–3244.CrossRefGoogle Scholar
  136. 136.
    Lehrman, S. (1993) Stanford seeks life after Cohen-Boyer patent expires. Nature 363, 574.PubMedGoogle Scholar
  137. 137.
    Anon (1990) Stanford updates bottom lines on Cohen-Boyer patent users. Biotech. Newswatch 10, 8.Google Scholar
  138. 138.
    US Patent No. 4,571,421. Mammalian gene for microbial expression.Google Scholar
  139. 139.
    Falcoila, L. (2000) Rewarding true innovation. Experimental use exemption and the trends in gene patenting. EMBO Reports 1, 200–203CrossRefGoogle Scholar
  140. 140.
    Barton, J.H. (2000) Reforming the patent system. Science 287, 1933–1934PubMedCrossRefGoogle Scholar
  141. 141.
    US Patent No. 3,461,461. 6-Amino-4-(subsituted amino)-1,2,-dihydro-1-hydroxy-2-iminopyrimidines.Google Scholar
  142. 142.
    Greminger, P., Foerster, E., Vetter, H., Baumgart, P., Vetter, W. (1986) Minoxidil and captopril in severe hypertension. Klin. Wochenschr. 64, 327–332PubMedCrossRefGoogle Scholar
  143. 143.
    Oh, M.S., Uribarri, J., Alveranga, D., Bazilinski, N., Lazar, I., Carroll, H.J. (1985) Minoxidil in a once-a-day step-3 antihypertensive program. J. Clin. Hypertens. 1, 23–29PubMedGoogle Scholar
  144. 144.
    Pettinger, W.A. (1980) Minoxidil and the treatment of severe hypertension. N. Engl. J. Med. 303, 922–926PubMedGoogle Scholar
  145. 145.
    Kosman, M.E. (1980) Evaluation of a new antihypertensive agent. Minoxidil. JAMA 244, 73–75PubMedCrossRefGoogle Scholar
  146. 146.
    US Patent No. 4,139,619. 6-Amino-4-(substituted amino)-1,2-dihydro-1-hydroxy-2-iminopyrimidine, topical compositions and process for hair growth.Google Scholar
  147. 147.
    US Patent No. 4,596,812. Methods and solutions for treating male pattern alopecia.Google Scholar
  148. 148.
    Katz, H.I. (1989) Topical minoxidil: review of efficacy and safety. Cutis 43, 94–98PubMedGoogle Scholar
  149. 149.
    Kowalski, T.J. (2000) Analyzing the USPTO’s revised utility guidelines. Nature Biotech. 18, 349–350CrossRefGoogle Scholar
  150. 150.
    Kowalski, T.J. (2000) Analyzing the new written description guidelines. Nature Biotech. 18, 461–462CrossRefGoogle Scholar
  151. 151.
    Enserink, M. (2000) Patent office may raise the bar on gene claims. Science 287, 1196–1197PubMedCrossRefGoogle Scholar
  152. 152.
    Blumenthal, D., Campbell, E.G., Anderson, M.S., Causino, N., and Louis, K.S. (1997) Withholding research results in academic life science. Evidence from a national survey of faculty. JAMA 277, 1224–1228.PubMedCrossRefGoogle Scholar
  153. 153.
    Windman, M. (1996) Commerical interests delay publication. Nature 379, 574.Google Scholar
  154. 154.
    US Patent No. 4,736,866. Transgenic non-human mammals.Google Scholar
  155. 155.
    Anderson, A. (1987) Animal patent dispute out in the open at congressional hearings. Nature 327, 546.PubMedGoogle Scholar
  156. 156.
    Booth, W. (1988) Animals of invention. Science 240, 718.PubMedCrossRefGoogle Scholar
  157. 157.
    Hooper, C. (1987) Patenting brave new animals: religion, economics, biotech meet in Capitol Hill battle. United Press Int’l. Newswire, Aug. 15, 1987.Google Scholar
  158. 158.
    Stone, R. (1995) Religious leaders oppose patenting genes and animals. Science 268, 1126.PubMedCrossRefGoogle Scholar
  159. 159.
    Stewart, T.A., Pattengale, P.K., and Leder, P. (1984) Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38, 627–637.PubMedCrossRefGoogle Scholar
  160. 160.
    Leder, A., Pattengale, P.K., Kuo, A., Stewart, T.A., and Leder, P. (1986) Consequences of widespread deregulation of the c-myc gene in transgenic mice; multiple neoplasms and normal development. Cell 45, 485–495.PubMedCrossRefGoogle Scholar
  161. 161.
    Lehrman, S. (1993) Ruling narrows US view of animal patents. Nature 361, 103.PubMedGoogle Scholar
  162. 162.
    Bizley, R.E. (1991) Patenting animals in Europe. Biotech. 9, 619–622.CrossRefGoogle Scholar
  163. 163.
    Editorial (1996) One way out of a patent quagmire. Nature 381, 175.Google Scholar
  164. 164.
    Porter, J.R. (2000) Patent confusion in law on new plant varieties. Nature 404, 13 [letter to the editor]PubMedCrossRefGoogle Scholar
  165. 165.
    Abbott, A. (1998) Europe’s life patent moratorium may go… Nature 393, 200.PubMedCrossRefGoogle Scholar
  166. 166.
    Spillmann-Fürst, I. (1999) Europe edges closer to GMO patent harmonization. Nature Biotech. 17, 842–843.CrossRefGoogle Scholar
  167. 167.
    Bunnin, B. (1985) Protecting intellectual property: copyright for journal authors and conference speakers. Birth 12 (suppl. 3) 29–31.PubMedCrossRefGoogle Scholar
  168. 168.
    Liedes, J. (1997) Copyright: evolution, not revolution. Science 276, 223–225.PubMedCrossRefGoogle Scholar
  169. 169.
    Dobkin, D.S. (1979) Copyright law undergoes major face-lift. JAMA 241, 1019–1020.PubMedCrossRefGoogle Scholar
  170. 170.
    Henry, N.L. (1974) Copyright: its adequacy in technological societies. Science 186, 993–1004.PubMedCrossRefGoogle Scholar
  171. 171.
    Frisse, M.E. and Tolva, J.N. (1996) The commerce of ideas: copyright in the digital era. Acad. Med. 71, 45–53.PubMedGoogle Scholar
  172. 172.
    Vardy, J. (1997) Copyright move on photocopies will cost banks and lawyers dear. Financial Post, May 20, p. 1.Google Scholar
  173. 173.
    American Geophysical Union v. Texaco, Inc., 60 F.3d 913 (2d Cir. 1995).Google Scholar
  174. 174.
    National Conference of Lawyers and Scientists (1995) How does the Texaco case affect photocopying by scientists? Science 270, 1450–1451.CrossRefGoogle Scholar
  175. 175.
    Lawler, A. (1995) Texaco offers to settle copyright case. Science 268, 1127.PubMedCrossRefGoogle Scholar
  176. 176.
    Helminski, F. (1993) Use and abuse of medical service marks. Mayo Clin. Proc. 68, 1212–1213.PubMedGoogle Scholar
  177. 177.
    Mayo Clinic v. Mayo’s Drug and Cosmetic, Inc., 113 N.W.2d 852 (Minn. 1962).Google Scholar
  178. 178.
    Editorial (1995) Names for hi-jacking. Nature 373, 370.Google Scholar
  179. 179.
    Chesnoff, S. (1995) The use of Taxol as a trademark. Nature 374, 208 [letter to the editor].PubMedCrossRefGoogle Scholar
  180. 180.
    Khan, N.U. (1995) Taxol trademark. Nature 374, 400 [letter to the editor].PubMedCrossRefGoogle Scholar
  181. 181.
    Wani, M.C., Taylor, H.L., Wall, M.E., Coggon, P. and McPhail, A.T. (1971) Plant anti-tumor agents. VI. The isolation and structure of Taxol. A novel anti-leukemic and anti-tumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 2325–2327.PubMedCrossRefGoogle Scholar
  182. 182.
    Nicolaou, K.C., Liu J.J., Ueno, H., Nantermet, P.G., Guy, R.K., Claiborne, C.F., Renaud, J., Couladouros, E.A., Paulvannan, K., and Sorensen, E.J. (1994) Total synthesis of Taxol. Nature 367, 630–634.PubMedCrossRefGoogle Scholar
  183. 183.
    Jack, D.B. (1997) One hundred years of aspirin. Lancet 350, 437–439.PubMedCrossRefGoogle Scholar
  184. 184.
    Bayer Co., Inc. v. United Drug Co., 272 F. 505 (S.D.N.Y. 1921).Google Scholar
  185. 185.
    Wood, A. (1997) New recognition for an old name. Chemical Week, Sept. 10, 1997, p. 51.Google Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  1. 1.Restoragen, Inc.Lincoln

Personalised recommendations