Molecular Biotechnology

, Volume 22, Issue 3, pp 231–242 | Cite as

Comparison of different decontamination methods for reagents to detect low concentrations of bacterial 16S DNA by real-time-PCR

  • Sven KlaschikEmail author
  • Lutz E. Lehmann
  • Ansgar Raadts
  • Andreas Hoeft
  • Frank Stuber


Contamination of polymerase chain reaction (PCR) reagents continues to be a major problem when consensus primers are used for detection of low concentrations of bacterial DNA. We designed a real-time polymerase chain reaction (PCR) for quantification of bacterial DNA by using consensus primers that bind specifically to the 16S region of bacterial DNA. We have tested four different methods of decontamination of PCR reagents in a project aimed at detecting bacterial DNA at low concentrations: deoxyribonuclease (DNAse) treatment, restriction endonuclease digestion, UV irradiation, and 8-methoxypsoralen in combination with long-wave UV light to intercalate contaminating DNA into double-stranded DNA. All four methods result in inhibition of the PCR reaction, and most of the decontamination procedures failed to eliminate the contaminating bacterial DNA. Only the DNAse decontamination proved to be efficient in eliminating contaminating DNA while conserving PCR efficiency. All four decontamination methods are time consuming and have the possibility of carrying new contamination into the reaction mixture. However, decontamination with DNAse may help, together with the use of highly purified PCR reagents, in detecting small amounts of bacterial DNA in clinical specimens.

Index Entries

PCR bacteria 16S DNA decontamination UV-irradiation 8-methoxypsoralen DNAse restriction endonuclease digestion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Medlin, L., Elwood, H. J., Stickel, S., and Sogin, M. L. (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499.PubMedCrossRefGoogle Scholar
  2. 2.
    Gutell, R. R., Larsen, N., and Woese, C. R. (1994) Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58, 10–26.PubMedGoogle Scholar
  3. 3.
    Woese, C. R. (1987) Bacterial evolution. Microbiol Rev 51, 221–271.PubMedGoogle Scholar
  4. 4.
    Bottger, E. C. (1989) Rapid determination of bacterial ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA. FEMS Microbiol Lett 53, 171–176.PubMedCrossRefGoogle Scholar
  5. 5.
    Chen, K., Neimark, H., Rumore, P., and Steinman, C. R. (1989) Broad range DNA probes for detecting and amplifying eubacterial nucleic acids. FEMS Microbiol Lett 48, 19–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Wilson, K. H., Blitchington, R. B., and Greene, R. C. (1990) Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 28, 1942–1946.PubMedGoogle Scholar
  7. 7.
    Barry, T., Powell, R. and Gannon, F. (1990) A general method to generate DNA probes for microorganisms. Biotechnology (N Y) 8, 233–236.CrossRefGoogle Scholar
  8. 8.
    Greisen, K., Loeffelhoz, M., Purohit, A., & Leong, D. (1994) PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol 32, 335–351.PubMedGoogle Scholar
  9. 9.
    Bottger, E. C. (1990) Frequent contamination of Taq polymerase with DNA. Clin Chem 36, 1258–1259.PubMedGoogle Scholar
  10. 10.
    Kwok, S. and Higuchi, R. (1989) Avoiding false positives with PCR. Nature 339, 237–238.PubMedCrossRefGoogle Scholar
  11. 11.
    Rand, K. H. and Houck, H. (1990) Taq polymerase contains bacterial DNA of unknown origin. Mol Cell Probes 4, 445–450.PubMedCrossRefGoogle Scholar
  12. 12.
    Schmidt, T. M., Pace, B., and Pace, N. R. (1991) Detection of DNA contamination in Taq polymerase. Biotechniques 11, 176–177.PubMedGoogle Scholar
  13. 13.
    Carroll, N. M., Adamson, P., and Okhravi, N. (1999) Elimination of bacterial DNA from Taq DNA polymerases by restriction endonuclease digestion. J Clin Microbiol 37, 3402–3404.PubMedGoogle Scholar
  14. 14.
    Corless, C. E., Guiver, M., Borrow, R., Edwards-Jones, V., Kaczmarski, E. B., and Fox, A. J. (2000) Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. J Clin Microbiol 38, 1747–1752.PubMedGoogle Scholar
  15. 15.
    DeFilippes, F. M. (1991) Decontaminating the polymerase chain reaction. Biotechniques 10, 26, 28, 30.PubMedGoogle Scholar
  16. 16.
    Hilali, F., Saulnier, P., Chachaty, E., and Andremont, A. (1997) Decontamination of polymerase chain reaction reagents for detection of low concentrations of 16S rRNA genes. Mol Biotechnol. 7, 207–216.PubMedCrossRefGoogle Scholar
  17. 17.
    Hughes, M. S., Beck, L. A., and Skuce, R. A. (1994) Identification and elimination of DNA sequences in Taq DNA polymerase. J Clin Microbiol 32, 2007–2008.PubMedGoogle Scholar
  18. 18.
    Jinno, Y., Yoshiura, K., and Niikawa, N. (1990) Use of psoralen as extinguisher of contaminated DNA in PCR. Nucleic. Acids. Res 18, 6739.PubMedCrossRefGoogle Scholar
  19. 19.
    Klausegger, A., Hell, M., Berger, A., et al. (1999) Gram type-specific broad-range PCR amplification for rapid detection of 62 pathogenic bacteria. J Clin Microbiol 37, 464–466.PubMedGoogle Scholar
  20. 20.
    Meier, A., Persing, D. H., Finken, M., and Bottger, E. C. (1993) Elimination of contaminating DNA within polymerase chain reaction reagents: implications for a general approach to detection of uncultured pathogens. J Clin Microbiol 31, 646–652.PubMedGoogle Scholar
  21. 21.
    Ou, C. Y., Moore, J. L., and Schochetman, G. (1991) Use of UV irradiation to reduce false positivity in polymerase chain reaction. Biotechniques 10, 442, 444, 446.PubMedGoogle Scholar
  22. 22.
    Rochelle, P. A., Weightman, A. J., and Fry, J. C. (1992) DNase I treatment of Taq DNA polymerase for complete PCR decontamination. Biotechniques 13, 520.PubMedGoogle Scholar
  23. 23.
    Sarkar, G. and Sommer, S. S. (1990) Shedding light on PCR contamination. Nature 343, 27.PubMedCrossRefGoogle Scholar
  24. 24.
    Ou, C. Y., McDonough, S. H., Cabanas, D., et al. (1990) Rapid and quantitative detection of enzymatically amplified HIV-1 DNA using chemiluminescent oligonucleotide probes. AIDS Res Hum Retroviruses 6, 1323–1329.PubMedGoogle Scholar
  25. 25.
    Widjojoatmodjo, M. N., Fluit, A. C., and Verhoef, J. (1994) Rapid identification of bacteria by PCR-single-strand conformation polymorphism. J Clin Microbiol 32, 3002–3007.PubMedGoogle Scholar
  26. 26.
    Sharma, J. K., Gopalkrishna, V., and Das, B. C. (1992) A simple method for elimination of unspecific amplifications in polymerase chain reaction. Nucleic Acids Res 20, 6117–6118.PubMedCrossRefGoogle Scholar
  27. 27.
    Roizes, G., Nardeux, P. C., and Monier, R. (1979) A new specific endonuclease from Anabaena variabilis. FEBS Lett 104, 39–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Furrer, B., Candrian, U., Wieland, P., and Luthy, J. (1990) Improving PCR efficiency. Nature 346, 324.PubMedCrossRefGoogle Scholar
  29. 29.
    Mariani, B. D., Martin, D. S., Levine, M. J., Booth, R. E. J., and Tuan, R. S. (1996) The Coventry Award. Polymerase chain reaction detection of bacterial infection in total knee arthroplasty. Clin Orthop 331, 11–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Widjojoatmodjo, M. N., Fluit, A. C., and Verhoef, J. (1995) Molecular identification of bacteria by fluorescence-based PCR-single-strand conformation polymorphism analysis of the 16S rRNA gene. J Clin Microbiol 33, 2601–2606.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Sven Klaschik
    • 1
    Email author
  • Lutz E. Lehmann
  • Ansgar Raadts
  • Andreas Hoeft
  • Frank Stuber
  1. 1.Klinik und Poliklinik für Anästhesiologie und Spezielle IntensivmedizinUniversität BonnBonnGermany

Personalised recommendations