Molecular Biotechnology

, Volume 22, Issue 2, pp 165–178

Copper-dependent functions for the prion protein



Prion diseases such as bovine spongiform encephalopathy and Creutzfeldt-Jakob disease are fatal neurodegenerative diseases. These diseases are characterized by the conversion of a normal cellular protein, the prion protein, to an abnormal isoform that is thought to be responsible for both pathogenesis in the disease and the infectious nature of the disease agent. Understanding the biology and metabolism of the normal prion protein is therefore important for understanding the nature of these diseases. This review presents evidence for the normal function of the cellular prion protein, which appears to depend on its ability to bind copper (Cu). There is now considerable evidence that the prion protein is an antioxidant. Once the prion protein binds Cu, it may have an activity like that of a superoxide dismutase. Conversion of the prion protein to an abnormal isoform might lead to a loss of antioxidant protection that could be responsible for neurodegeneration in the disease.

Index Entries

Antioxidant Creutzfeldt-Jakob scrapie bovine spongiform encephalopathy Cu prion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Horwich, A. L. and Weissman, J. S. (1997) Deadly conformations—protein misfolding in prion disease. Cell 89, 499–510.PubMedCrossRefGoogle Scholar
  2. 2.
    Liemann, S. and Glockshuber, R. (1998) Transmissible spongiform encephalopathies. Biochem. Biophys. Res. Commun. 250, 187–193.PubMedCrossRefGoogle Scholar
  3. 3.
    Prusiner, S. B. (1997) Prion diseases and the BSE crisis. Science 278, 245–251.PubMedCrossRefGoogle Scholar
  4. 4.
    Prusiner, S. B. (1982) Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144.PubMedCrossRefGoogle Scholar
  5. 5.
    Basler, K., Oesch, B., Scott, M., et al. (1986) Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46, 417–428.PubMedCrossRefGoogle Scholar
  6. 6.
    Sparkes, R. S., Simon, M., Cohn, V. H., et al. (1986) Assignment of the human and mouse prion protein genes to homologous chromosomes. Proc. Natl. Acad. Sci. USA 83, 7358–7362.PubMedCrossRefGoogle Scholar
  7. 7.
    Locht, C., Chesebro, B., Race, R., and Keith, J. M. (1986) Molecular cloning and complete sequence of prion protein cDNA from mouse brain infected with the scrapie agent. Proc. Natl. Acad. Sci. USA 83, 6372–6376.PubMedCrossRefGoogle Scholar
  8. 8.
    Sendo, F., Suzuki, K., Watanabe, T., Takeda, Y., and Araki, Y. (1998) Modulation of leukocyte transendothelial migration by integrin-associated glycosyl phosphatidyl inositol (GPI)-anchored proteins. Inflamm. Res. 47 (Suppl. 3), S133-S136.PubMedCrossRefGoogle Scholar
  9. 9.
    Gabriel, J. M., Oesch, B., Kretzschmar, H., Scott, M., and Prusiner, S. B. (1992) Molecular cloning of a candidate chicken prion protein. Proc. Natl. Acad. Sci. USA 89, 9097–9101.PubMedCrossRefGoogle Scholar
  10. 10.
    Simonic, T., Duga, S., Strumbo, B., Asselta, R., Ceciliani, F., and Ronchi, S. (2000) cDNA cloning of turtle prion protein [In Process Citation]. FEBS Lett. 469, 33–38.PubMedCrossRefGoogle Scholar
  11. 11.
    Booth, D. R., Sunde, M., Bellotti, V., et al. (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis [see comments]. Nature 385, 787–793.PubMedCrossRefGoogle Scholar
  12. 12.
    Moore, R. C., Lee, I. Y., Silverman, G. L., et al. (1999) Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J. Mol. Biol. 292, 797–817.PubMedCrossRefGoogle Scholar
  13. 13.
    Sakaguchi, S., Katamine, S., Nishida, N., et al. (1996) Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380, 528–531.PubMedCrossRefGoogle Scholar
  14. 14.
    Matthews, S., Barlow, P., Boyd, J., et al. (1994) Structural similarity between the p17 matrix protein of HIV-1 and interferon gamma. Nature 370, 666–668.PubMedCrossRefGoogle Scholar
  15. 15.
    James, T. L., Liu, H., Ulyanov, N. B., et al. (1997) Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc. Natl. Acad. Sci. USA 94, 10,086–10,091.CrossRefGoogle Scholar
  16. 16.
    Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R., and Wuthrich, K. (1996) NMR structure of the mouse prion protein domain PrP(121–321). Nature 382, 180–182.PubMedCrossRefGoogle Scholar
  17. 17.
    Wildegger, G., Liemann, S., and Glockshuber, R. (1999) Extremely rapid folding of the C-terminal domain of the prion protein without kinetic intermediates. Nat. Struct. Biol. 6, 550–553.PubMedCrossRefGoogle Scholar
  18. 18.
    Hornshaw, M. P., McDermott, J. R., and Candy, J. M. (1995) Cu-binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem. Biophys. Res. Commun. 207, 621–629.PubMedCrossRefGoogle Scholar
  19. 19.
    Brown, D. R., Qin, K., Herms, J. W., et al. (1997) The cellular prion protein binds Cu in vivo. Nature 390, 684–687.PubMedCrossRefGoogle Scholar
  20. 20.
    Brown, D. R., Wong, B. S., Hafiz, F., Clive, C., Haswell, S., and Jones, I. M. (1999) Normal prion protein has an activity like that of superoxide dismutase. Biochem. J. 344, 1–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Stöckel, J., Safar, J., Wallace, A. C., Cohen, F. E., and Prusiner, S. B. (1998) Prion protein selectively binds Cu(II) ions. Biochemistry 37, 7185–7193.PubMedCrossRefGoogle Scholar
  22. 22.
    Viles, J. H., Cohen, F. E., Prusiner, S. B., Goodin, D. B., Wright, P. E., and Dyson, H. J. (1999) Cu-binding to the prion protein: Structural implications of four identical cooperative binding sites. Proc. Natl. Acad. Sci. USA 96, 2042–2047.PubMedCrossRefGoogle Scholar
  23. 23.
    Miura, T., Hori-i, A., and Takeuchi, H. (1996) Metal-dependent alpha-helix formation promoted by the glycine-rich octapeptide region of prion protein. FEBS Lett. 396, 248–252.PubMedCrossRefGoogle Scholar
  24. 24.
    Ruiz, F. H., Silva, E., and Inestrosa, N. C. (2000) The N-Terminal Tandem Repeat Region of Human Prion Protein Reduces Cu: Role of Tryptophan Residues. Biochem. Biophys. Res. Commun. 269, 491–495.PubMedCrossRefGoogle Scholar
  25. 25.
    Shiraishi, N., Ohta, Y., and Nishikimi, M. (2000) The Octapeptide Repeat Region of Prion Protein Binds Cu(II) in the Redox-Inactive State. Biochem. Biophys. Res. Commun. 267, 398–402.PubMedCrossRefGoogle Scholar
  26. 26.
    Wong, B. S., Wang, H., Brown, D. R., and Jones, I. M. (1999) Selective oxidation of methionine residues in prion proteins. Biochem. Biophys. Res. Commun. 259, 352–355.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhou, B. and Gitschier, J. (1997) hCTR1: a human gene for Cu uptake identified by complementation in yeast. Proc. Natl. Acad. Sci. USA 94, 7481–7486.PubMedCrossRefGoogle Scholar
  28. 28.
    Hornshaw, M. P., McDermott, J. R., Candy, J. M., and Lakey, J. H. (1995) Cu-binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem. Biophys. Res. Commun. 214, 993–999.PubMedCrossRefGoogle Scholar
  29. 29.
    Brown, D. R. (1999) Prion protein expression aids cellular uptake and veratridine-induced release of Cu. J. Neurosci. Res. 58, 717–725.PubMedCrossRefGoogle Scholar
  30. 30.
    Jackson G. S., Murray I., Hosszu, L. L., et al. (2001) Location and properties of metal-binding sites on the human prion protein. Proc. Natl. Acad. Sci. USA 98, 8531–8535.PubMedCrossRefGoogle Scholar
  31. 31.
    Brown, D. R., Herms, J., and Kretzschmar, H. A. (1994) Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport 5, 2057–2060.PubMedGoogle Scholar
  32. 32.
    Giese, A., Brown, D. R., Groschup, M. H., Feldmann, C., Haist, I., and Kretzschmar, H. A. (1998) Role of microglia in neuronal cell death in prion disease. Brain Pathol. 8, 449–457.PubMedGoogle Scholar
  33. 33.
    Brandner, S., Isenmann, S., Raeber, A., et al. (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343.PubMedCrossRefGoogle Scholar
  34. 34.
    Brown, D. R., Schmidt, B., and Kretzschmar, H. A. (1996) Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380, 345–347.PubMedCrossRefGoogle Scholar
  35. 36.
    Brown, D. R., Schulz-Schaeffer, W. J., Schmidt, B., and Kretzschmar, H. A. (1997) Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp. Neurol. 146, 104–112.PubMedCrossRefGoogle Scholar
  36. 37.
    Büeler, H., Aguzzi, A., Sailer, A., et al. (1993) Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347.PubMedCrossRefGoogle Scholar
  37. 38.
    Kuwahara, C., Takeuchi, A. M., Nishimura, T., et al. (1999) Prions prevent neuronal cell line death. Nature 400, 225–226.PubMedCrossRefGoogle Scholar
  38. 39.
    Brown, D. R., Schmidt, B., and Kretzschmar, H. A. (1997) Expression of prion protein in PC12 is enhanced by exposure to oxidative stress. Int. J. Dev. Neurosci. 15, 961–972.PubMedCrossRefGoogle Scholar
  39. 40.
    Brown, D. R. and Besinger, A. (1998) Prion protein expression and superoxide dismutase activity. Biochem. J. 334, 423–429.PubMedGoogle Scholar
  40. 41.
    White, A. R., Collins, S. J., Maher, F., et al. (1999) Prion protein-deficient neurons reveal lower glutathione reductase activity and increased susceptibility to hydrogen peroxide toxicity. Am. J. Pathol. 155, 1723–1730.PubMedGoogle Scholar
  41. 42.
    Perovic, S., Schroder, H. C., Pergande, G., Ushijima, H., and Muller, W. E. (1997) Effect of flupirtine on Bcl-2 and glutathione level in neuronal cells treated in vitro with the prion protein fragment (PrP106–126) Exp. Neurol. 147, 518–524.PubMedCrossRefGoogle Scholar
  42. 43.
    Brown, D. R., Nicholas, R. St. J., and Canevari, L. (2002) Lack of prion protein expression results in a neuronal phenotype sensitive to stress. J. Neurosci. Res. 67, 211–224.PubMedCrossRefGoogle Scholar
  43. 44.
    Huber, R., Deboer. T., and Tobler I. (2002) Sleep deprivation in prion protein deficient mice sleep deprivation in prion protein deficient mice and control mice: genotype dependent regional rebound. Neuroreport 13, 1–4.PubMedCrossRefGoogle Scholar
  44. 45.
    Collinge, J., Whittington, M. A., Sidle, K. C., et al. (1994) Prion protein is necessary for normal synaptic function. Nature 370, 295–297PubMedCrossRefGoogle Scholar
  45. 46.
    Guentchev, M., Voigtländer, T., Haberler, C., Groschup, M. H., and Budka, H. (2000) Evidence for oxidative stress in experimental prion disease. Neurobiol. Dis. 7, 270–273.PubMedCrossRefGoogle Scholar
  46. 47.
    Wong, B.-S., Brown, D. R., Pan, T., et al. (2001a) Oxidative impairment in scrapie-infected mice is associated with brain metal perturbations and altered antioxidation activities. J. Neurochem. 79, 689–698.PubMedCrossRefGoogle Scholar
  47. 48.
    Brown, D. R., Schmidt, B., and Kretzschmar, H. A. (1998b) Effects of Cu on survival of prion protein knockout neurons and glia. J. Neurochem. 70, 1686–1693.PubMedGoogle Scholar
  48. 49.
    Steinebach, O. M. and Wolterbeek, H. T. (1994) Role of cytosolic Cu, metallothionein and glutathione in Cu toxicity in rat hepatoma tissue culture cells. Toxicology 92, 75–90.PubMedCrossRefGoogle Scholar
  49. 50.
    Brown, D. R., Clive, C., and Haswell, S. J. (2001) Antioxidant activity related to Cu-binding of native prion protein. J. Neurochem. 76, 69–76.PubMedCrossRefGoogle Scholar
  50. 51.
    Stahl, N., Borchelt, D. R., and Prusiner, S. B. (1990) Differential release of cellular and scrapie prion proteins from cellular membranes by phosphatidylinositol-specific phospholipase C. Biochemistry 29, 5405–5412.PubMedCrossRefGoogle Scholar
  51. 52.
    Salès, N., Rodolfo, K., Hassig, R., Faucheux, B., Di Giamberardino, L., and Moya, K. L. (1998) Cellular prion protein localization in rodent and primate brain. Eur. J. Neurosci. 10, 2464–2471.PubMedCrossRefGoogle Scholar
  52. 53.
    DiDonato, M. and Sarkar, B. (1997) Cu transport and its alterations in Menkes and Wilson diseases. Biochim. Biophys. Acta 1360, 3–16.PubMedGoogle Scholar
  53. 54.
    Vulpe, C. D. and Packman, S. (1995) Cellular Cu transport. Annu. Rev. Nutr. 15, 293–322.PubMedCrossRefGoogle Scholar
  54. 55.
    Horn, N., Tonnesen, T., and Tümer, Z. (1992) Menkes disease: an x-linked neurological disorder of the Cu metabolism. Brain Pathol. 2, 351–362.PubMedGoogle Scholar
  55. 56.
    Hartmann, H. A. and Evenson, M. A. (1992) Deficiency of Cu can cause neuronal degeneration. Med. Hypotheses 38, 75–85.PubMedCrossRefGoogle Scholar
  56. 57.
    Tanzi, R. E., Petrukhin, K., Chernov, I., et al. (1993) The Wilson disease gene is a Cu transporting ATPase with homology to the Menkes disease gene. Nat. Genet. 5, 344–350.PubMedCrossRefGoogle Scholar
  57. 58.
    Cuthbert, J. A. (1995) Wilson’s disease: a new gene and an animal model for an old disease. J. Investig. Med. 43, 323–336.PubMedGoogle Scholar
  58. 59.
    Dijkstra, M., Vonk, R. J., and Kuipers, F. (1996) How does Cu get into bile? New insights into the mechanism(s) of hepatobiliary Cu transport. J. Hepatol. 24, 109–120.PubMedCrossRefGoogle Scholar
  59. 60.
    Colburn, R. W. and Maas, J. W. (1965) Adenosine triphosphate-metal-norepinephrine ternary complexes and catecholamine binding. Nature 208, 37–41.PubMedCrossRefGoogle Scholar
  60. 61.
    Rajan, K. S., Colburn, R. W., and Davis, J. M. (1976) Distribution of metal ions in the subcellular fractions of several rat brain areas. Life Sci. 18, 423–431.PubMedCrossRefGoogle Scholar
  61. 62.
    Kardos, J., Kovacs, I., Hajos, F., Kalman, M., and Simonyi, M. (1989) Nerve endings from rat brain tissue release Cu upon depolarization. A possible role in regulating neuronal excitability. Neurosci. Lett. 103, 139–144.PubMedCrossRefGoogle Scholar
  62. 63.
    Barnea, A. and Hartter, D. E., and Cho, G. (1989) High-affinity uptake of 67Cu into a veratridine-releasable pool in brain tissue. Am. J. Physiol. 257, C315–322.PubMedGoogle Scholar
  63. 64.
    Gabrielsson, B., Robson, T., Norris, D., and Chung, S. H. (1986) Effects of divalent metal ions on the uptake of glutamate and GABA from synaptosomal fractions. Brain Res. 384, 218–223.PubMedCrossRefGoogle Scholar
  64. 65.
    Ma, J. Y. and Narahashi, T. (1993) Differential modulation of GABA-α receptor-channel complex by polyvalent cations in rat dorsal root ganglion neurons. Brain Res., 607, 222–232.PubMedCrossRefGoogle Scholar
  65. 66.
    Velez-Pardo, C., Jimenez del Rio, M., Ebinger, G., and Vauquelin, G. (1995) Manganese and Cu promote the binding of dopamine to “serotonin binding proteins” in bovine frontal cortex. Neurochem. Int. 26, 615–622.PubMedCrossRefGoogle Scholar
  66. 67.
    Farrar, J. R. and Hoss, W. (1984) Effects of Cu on the binding of agonists and antagonists to muscarinic receptors in rat brain. Biochem. Pharmacol. 33, 2849–2856.PubMedCrossRefGoogle Scholar
  67. 68.
    Farrar, J. R., Hoss, W., Herndon, R. M., and Kuzmiak, M. (1985) Characterization of muscarinic cholinergic receptors in the brains of Cu-deficient rats. J. Neurosci. 5, 1083–1089.PubMedGoogle Scholar
  68. 69.
    Geiger, J. D., Seth, P. K., Klevay, L. M., and Parmar, S. S. (1984) Receptor-binding changes in Cu-deficient rats. Pharmacology 28, 196–202.PubMedCrossRefGoogle Scholar
  69. 70.
    Vlachova, V., Zemkova, H., and Vyklicky, L., Jr. (1996) Cu modulation of NMDA responses in mouse and rat cultured hippocampal neurons. Eur. J. Neurosci. 8, 2257–2264.PubMedCrossRefGoogle Scholar
  70. 71.
    Fraústo de Silva, J. J. R. and Williams, R. J. P. (1991) In The Biological Chemistry of Elements, Oxford, Clarendon Press, UK.Google Scholar
  71. 72.
    Linder, M. C. (1991) Biochemistry of Cu, Plenum Press, New York.Google Scholar
  72. 73.
    Hartter, D. E. and Barnea, A. (1988) Brain tissue accumulates 67Cu by two ligand-dependent saturable processes. A high affinity, low capacity and a low affinity, high capacity process. J. Biol. Chem. 263, 799–805.PubMedGoogle Scholar
  73. 74.
    Andrews, N. C. (2001) Mining Cu transport genes. Proc. Natl. Acad. Sci. USA 98, 6543–6545.PubMedCrossRefGoogle Scholar
  74. 75.
    Hornemann, S., Korth, C., Oesch, B., Riek, R., Wider, G., Wuthrich, K., and Glockshuber, R. (1997) Recombinant full-length murine prion protein, mPrP(23–231): purification and spectroscopic characterization. FEBS Lett. 413, 277–281.PubMedCrossRefGoogle Scholar
  75. 76.
    Fridovich, I. (1974) Superoxide dismutases. Ann. Rev. Biochem. 44, 147–159.CrossRefGoogle Scholar
  76. 77.
    Chowdhury, S. K., Eshraghi, J., Wolfe, H., Forde, D., Hlavac, A. G., and Johnston, D. (1995) Mass spectrometric identification of amino acid transformations during oxidation of peptides and proteins: modifications of methionine and tyrosine. Anal. Chem. 67, 390–398.PubMedCrossRefGoogle Scholar
  77. 78.
    Fridovich, I. (1997) Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J. Biol. Chem. 272, 18,515–18,517.CrossRefGoogle Scholar
  78. 79.
    Marklund, S. L. (1982) Human Cu-containing superoxide dismutase of high molecular weight. Proc. Natl. Acad. Sci. USA 79, 7634–7638.PubMedCrossRefGoogle Scholar
  79. 80.
    Ookawara, T., Imazeki, N., Matsubara, O., et al. (1998) Tissue distribution of immunoreactive mouse extracellular superoxide dismutase. Am. J. Physiol. 275, C840–847.PubMedGoogle Scholar
  80. 81.
    Gohel, C., Grigoriev, V., Escaig-Haye, F., et al. (1999) Ultrastructural localization of cellular prion protein (PrPc) at the neuromuscular junction. J. Neurosci. Res. 55, 261–267PubMedCrossRefGoogle Scholar
  81. 82.
    Rodolfo, K., Hassig, R., Moya, K. L., Frobert, Y., Grassi, J., and Di Giamberardino, L. (1999) A novel cellular prion protein isoform present in rapid anterograde axonal transport. Neuroreport 10, 3639–3644.PubMedCrossRefGoogle Scholar
  82. 83.
    Brown, D. R. (1999) Prion protein peptide neurotoxicity can be mediated by astrocytes. J. Neurochem. 73, 1105–1113.PubMedCrossRefGoogle Scholar
  83. 84.
    Moser, M., Colello, R. J., Pott, U., and Oesch, B. (1995) Developmental expression of the prion protein gene in glial cells. Neuron 14, 509–17.PubMedCrossRefGoogle Scholar
  84. 85.
    Brown, D. R., Besinger, A., Herms, J. W., and Kretzschmar, H. A. (1998a) Microglial expression of the prion protein. Neuroreport 9, 1425–1429.PubMedGoogle Scholar
  85. 86.
    Diomede, L., Sozzani, S., Luini, W., et al. (1996) Activation effects of a prion protein fragment [PrP-(106–126)] on human leucocytes. Biochem. J. 320, 563–570.PubMedGoogle Scholar
  86. 87.
    Bendheim, P. E., Brown, H. R., Rudelli, R. D., Scala, L. J., et al. (1992) Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology 42, 149–156.PubMedGoogle Scholar
  87. 88.
    Brown, H. R., Goller, N. L., Rudelli, R. D., et al. (1990) The mRNA encoding the scrapie agent protein is present in a variety of nonneuronal cells. Acta Neuropathol. 80, 1–6.PubMedCrossRefGoogle Scholar
  88. 89.
    Brown, D. R., Schmidt, B., and Kretzschmar, H. A. (1998) A prion protein fragment primes type 1 astrocytes to proliferation signals from microglia. Neurobiol. Dis. 4, 410–422.PubMedCrossRefGoogle Scholar
  89. 90.
    Thackray, A. M., Knight, R., Haswell, S. J., Bujdoso, R., and Brown, D. R. (2002) Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochem. J. 362, 253–258.PubMedCrossRefGoogle Scholar
  90. 91.
    Wong, B.-S., Chen, S. G., Colucci, M., et al. (2001) Aberrant metal binding by prion protein in human prion disease. J. Neurochem. 78, 1400–1408.PubMedCrossRefGoogle Scholar
  91. 92.
    Raeber, A., Race, R. E., Brandner, S., et al. (1997) Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie. EMBO J. 16, 6057–6065.PubMedCrossRefGoogle Scholar
  92. 93.
    Dupuis, L., Mbebi, C., Gonzalez de Aguilar, J. L., et al. (2002) Loss of prion protein in a transgenic model of amyotrophic lateral sclerosis. Mol. Cell Neurosci. 19, 216–224.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  1. 1.Department of Biology and BiochemistryUniversity of BathBathUK

Personalised recommendations