Molecular Biotechnology

, Volume 22, Issue 1, pp 51–86 | Cite as

Molecular determinants of metalloproteinase substrate specificity

Matrix metalloproteinase substrate binding domains, modules, and exosites
  • Christopher M. OverallEmail author


The function of ancillary domains and modules attached to the catalytic domain of mutidomain proteases, such as the matrix metalloproteinases (MMPs), are not well understood. The importance of discrete MMP substrate binding sites termed exosites on domains located outside the catalytic domain was first demonstrated for native collagenolysis. The essential role of hemopexin carboxyl-domain exosites in the cleavage of noncollagenous substrates such as chemokines has also been recently revealed. This article updates a previous review of the role of substrate recognition by MMP exosites in both preparing complex substrates, such as collagen, for cleavage and for tethering noncollagenous substrates to MMPs for more efficient proteolysis. Exosite domain interaction and movements—“molecular tectonics”—that are required for native collagen triple helicase activity are discussed. The potential role of collagen binding in regulating MMP-2 (gelatinase A) activation at the cell surface reveals unexpected consequences of substrate interactions that can lead to collagen cleavage and regulation of the activation and activity of downstream proteinases necessary to complete the collagenolytic cascade.

Index Entries

Protease metalloproteinase MMP exosite collagen gelatinase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Overall, C. M. (1994) Regulation of tissue inhibitor of matrix metalloproteinase expression. Ann. N.Y. Acad. Sci. 732, 51–64.PubMedCrossRefGoogle Scholar
  2. 2.
    Bode, W., Fernandez-Catalan, C., Tschesche, H., Grams, F., Nagase, H., and Maskos, K. (1999) Structural properties of matrix metalloproteinases. Cell. Mol. Life Sci. 55, 639–652.PubMedCrossRefGoogle Scholar
  3. 3.
    Massova, I., Kotra, L. P., Fridman, R., and Mobashery, S. (1998) Matrix metalloproteinases: structure, evolution, and diversification. FASEB J. 12, 1075–1095.PubMedGoogle Scholar
  4. 4.
    Muller, D., Quantin, B., Gesnel, M. C., Millon-Collard, R., Abecassis, J., and Breathnach, R. (1988) The collagenase gene family in humans consists of at least four members. Biochem. J. 253, 187–192.PubMedGoogle Scholar
  5. 5.
    Yang, M., Murray, M. T., and Kurkinen, M. (1997) A novel matrix metalloproteinase gene (XMMP) encoding vitronectin-like motifs is transiently expressed in Xenopus laevis early embryo development. J. Biol. Chem. 272, 13527–13533.PubMedCrossRefGoogle Scholar
  6. 6.
    Collier I. E., Wilhelm S. M., Eisen A. Z., et al. (1988) H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J. Biol. Chem. 263, 6579–6587.PubMedGoogle Scholar
  7. 7.
    Wilhelm, S. M., Collier, I. E., Marmer, B. L., Eisen, A. Z., Grant, G. A., and Goldberg, G. I. (1989) SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J. Biol. Chem. 264, 17213–17221.PubMedGoogle Scholar
  8. 8.
    Steffensen, B. J., Wallon, U. M., and Overall, C. M. (1995) Extracellular matrix binding properties of recombinant fibronectin type II-like modules of human 72-kDa gelatinase/type IV collagenase. High affinity binding to native type I collagen but not native type IV collagen. J. Biol. Chem. 270, 11555–11566.PubMedCrossRefGoogle Scholar
  9. 9.
    Overall, C. M., Wallon, U. M., Steffensen, B., De Clerk, Y., Tschesche, H., and Abbey, R. (2000) In: Inhibitors of Matrix Metalloproteinases in Development and Disease (Edwards, D., Hawkes, S., and Kokha, R., eds.) Gordon and Breach, Amsterdam, Holland, 57–69.Google Scholar
  10. 10.
    Ohuchi, E., Imai, K., Fujii, Y., Sato, H., Seiki, M., and Okada, Y. (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J. Biol. Chem. 272, 2446–2451.PubMedCrossRefGoogle Scholar
  11. 11.
    Pei, D. and Weiss, S. J. (1996) Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J. Biol. Chem. 271, 9135–9140.PubMedCrossRefGoogle Scholar
  12. 12.
    Hewitt, R. E., Corcoran, M. L., and Stetler-Stevenson, W. G. (1996) The Activation, Expression and Purification of Gelatinase A (MMP2). Trends Glycosci. Glycotechnol. 8, 23–36.Google Scholar
  13. 13.
    Sodek, J. and Overall, C. M. (1988) In “The Biological Mechanisms of Tooth Eruption and Root Resorption” (Davidovitch, Z., ed.) Published by EBSCO Media, Birmingham, AL, pp. 303–311.Google Scholar
  14. 14.
    McQuibban, G. A., Gong, J.-H., Tam, E., McCulloch, C. A. G., Clark-Lewis, I., and Overall, C. M. (2000) Inflammation Dampened by Gelatinase A Cleavage of Monocyte Chemoattractant Protein-3. Science 289, 1202–1206.PubMedCrossRefGoogle Scholar
  15. 15.
    McQuibban, G. A., Butler, G. S., Gong, J.- H., Bendall, L., Power, C., Clark-Lewis, I., and Overall, C. M. (2001) Matrix Metalloproteinase Activity Inactivates the Chemokine Stromal-Cell Derived Factor-1. J. Biol. Chem. 276, 43503–43508.PubMedCrossRefGoogle Scholar
  16. 16.
    Werb, Z., Tremble, P. M., Behrendtsen, E., Crowley, E., and Damsky, C. H. (1989) Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J. Cell Biol. 109, 877–889.PubMedCrossRefGoogle Scholar
  17. 17.
    Bork, P., Downing, A. K., Kieffer, B., and Campbell, I. D. (1996) Structure and distribution of modules in extracellular proteins. Quat Rev. Biophys. 29, 119–167.Google Scholar
  18. 18.
    Patthy, L. (1991) Exons—original building blocks of proteins? Bioessays 13, 187–192.PubMedCrossRefGoogle Scholar
  19. 19.
    Patthy, L. (1996) Exon shuffling and other ways of module exchange. Matrix Biol. 15, 301–310.PubMedCrossRefGoogle Scholar
  20. 20.
    Gilbert, W. (1978) Why genes in pieces? Nature 271, (5645), 501.PubMedCrossRefGoogle Scholar
  21. 21.
    Blake, C. (1979) Exons encode protein functional units. Nature 277, (5698): 598PubMedCrossRefGoogle Scholar
  22. 22.
    Dorit, R. L., Schoenbacher, L., and Gilbert, W. (1990) How big is the universe of exons? Science 250, 1377–1382.PubMedCrossRefGoogle Scholar
  23. 23.
    Campbell, I. D. and Downing, A. K. (1998) NMR of modular proteins. Nature Struct. Biol. NMR Supp. 496–499.Google Scholar
  24. 24.
    Collier, I. E., Bruns, G. A. P., Goldberg, G. I., and Gerhard, D. S. (1991) On the structure and chromosome location of the 72- and 92-kDa human type IV collagenase genes. Genomics 9, 429–434.PubMedCrossRefGoogle Scholar
  25. 25.
    Li, J., Brick, P., O’Hare, M. C., et al. (1995) Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed beta-propeller. Structure 3, 541–549.PubMedCrossRefGoogle Scholar
  26. 26.
    Libson, A. M., Gittis, A. G., Collier, I. E., Marmer, B. L., Goldberg, G. I., and Lattman E. E. (1995) Crystal structure of the haemopexin-like C-terminal domain of gelatinase A. Nature Struct. Biol. 2, 938–942.PubMedCrossRefGoogle Scholar
  27. 27.
    Gohlke, U., Gomis-Rüth, F.- Z., Crabbe, T., Murphy, G., Docherty, A. J. P., and Bode, W. (1996) The C-terminal (haemopexin-like) domain structure of human gelatinase A (MMP2): structural implications for its function. FEBS Letters 378, 126–130.PubMedCrossRefGoogle Scholar
  28. 28.
    Gomis-Rüth, F. X., Gohlke, U., Betz, M., Knauper, V., Murphy, G., Lopez-Otin, C., and Bode, W. (1996) The helping hand of collagenase-3 (MMP-13): 2.7 A crystal structure of its C-terminal haemopexin-like domain. J. Mol. Biol. 264, 556–566.PubMedCrossRefGoogle Scholar
  29. 29.
    Wallon, U. M., and Overall, C. M. (1997) The hemopexin-like domain (C domain) of human gelatinase A (matrix metalloproteinase-2) requires Ca2+ for fibronectin and heparin binding. Binding properties of recombinant gelatinase A C domain to extracellular matrix and basement membrane components. J. Biol. Chem. 272, 7473–7481.PubMedCrossRefGoogle Scholar
  30. 30.
    Rawlings, N. D. and Barrett, A. J. (1995) Evolutionary families of metallopeptidases. Meth Enzymol. 248, 183–228.PubMedCrossRefGoogle Scholar
  31. 31.
    Bode, W. (1995) A helping hand for collagenases: the hemopexin-like domain. Structure 2, 527–530.CrossRefGoogle Scholar
  32. 32.
    Velasco, G., Pendas, A. M., Fueyo, A., Knauper, V., Murphy, G., and Lopez-Otin, C. (1999) Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J. Biol. Chem. 274, 4570–4576.PubMedCrossRefGoogle Scholar
  33. 33.
    Springman, E. B., Angleton, E. L., Birkedal-Hansen, H., and Van Wart, H. E. (1990) Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation. Proc. Natl. Acad. Sci. USA 87, 364–368.PubMedCrossRefGoogle Scholar
  34. 34.
    Leahy, D. J., Aukhil, I., and Erickson, H. P. (1996) 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84, 155–164.PubMedCrossRefGoogle Scholar
  35. 35.
    Pei, D. and Weiss, S. J. (1995) Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375, 244–247.PubMedCrossRefGoogle Scholar
  36. 36.
    Windsor, L. J., Bodden, M. K., Birkedal-Hansen, B., Engler, J. A., and Birkedal-Hansen, H. (1994) Mutational analysis of residues in and around the active site of human fibroblast-type collagenase. J. Biol. Chem. 269, 26201–26207.PubMedGoogle Scholar
  37. 37.
    Bode, W., Gomis-Ruth, F.- X., and Stockler, W. (1993) Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett. 331, 134–140.PubMedCrossRefGoogle Scholar
  38. 38.
    Pourmotabbed T., Solomon, T. L., Hasty, K. A., and Mainardi, C. L. (1994) Characteristics of 92kDa type IV collagenase/gelatinase produced by granulocytic leukemia cells: structure, expression of cDNA in E. coli and enzymic properties. Biochim. Biophys. Acta. 1204, 97–107.PubMedGoogle Scholar
  39. 39.
    Fields, B. B., Van Wart H. E., and Birkedal-Hansen, H. (1987) Sequence specificity of human skin fibroblast collagenase. Evidence for the role of collagen structure in determining the collagenase cleavage site. J. Biol. Chem. 262, 6221–6226.PubMedGoogle Scholar
  40. 40.
    Netzel-Arnett, S., Fields, G. B., Birkedal-Hansen, H., and Van Wart, H. E. (1991) Sequence specificities of human fibroblast and neutrophil collagenases. J. Biol. Chem. 266, 6747–6755.PubMedGoogle Scholar
  41. 41.
    Netzel-Arnett, S., Sang, Q. X., Moore, W. G., Navre, M., Birkedal-Hansen, H., and Van Wart, H. E. (1993) Comparative sequence specificities of human 72- and 92-kDa gelatinases (type IV collagenases) and PUMP (matrilysin). Biochemistry 32, 6427–6432.PubMedCrossRefGoogle Scholar
  42. 42.
    McGeeham, G. M., Bickett, D. M., Green, M., Kassel, D., Wiseman, J. S., and Berman, J. (1994) Characterization of the peptide substrate specificities of interstitial collagenase and 92-kDa gelatinase. Implications for substrate optimization. J. Biol. Chem. 269, 32814–32820.Google Scholar
  43. 43.
    Welch, A. R., Holman, C. M., Huber, M., Brenner, M. C., Browner, M. F., and Van Wart, H. E. (1996) Understanding the P1′ specificity of the matrix metalloproteinases: effect of S1′ pocket mutations in matrilysin and stromelysin-1. Biochemistry 35, 10,103–10,109.Google Scholar
  44. 44.
    Borkakoti, N., Winkler, F. K., Williams, D. H., et al. (1994) Structure of human fibroblast collagenase complexed with an inhibitor. Nature Struct. Biol. 1, 106–110.PubMedCrossRefGoogle Scholar
  45. 45.
    Lovejoy, B., Cleasby, A., Hassell, A. M., et al. (1994) Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science 263, 375–377.PubMedCrossRefGoogle Scholar
  46. 46.
    Stams, T., Spurlino, J. C., Smith, D. L., et al. (1994) Structure of human neutrophil collagenase reveals large S1′ specificity pocket. Nature Struct. Biol. 1, 119–123.PubMedCrossRefGoogle Scholar
  47. 47.
    Bode, W., Reinemer, A., Huber, R., Kleine, T., Schnierer, S., and Tschesche, H. (1994) The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 13, 1263–1269.PubMedGoogle Scholar
  48. 48.
    Massova, I., Fridman, R., and Mobashery, S. (1997) Structural insights into the catalytic domains of human matrix metalloproteinaase-2 and human matrix metalloproteinase-9: Implications for substrate specificites. J. Mol. Model. 3, 17–30.CrossRefGoogle Scholar
  49. 49.
    Docherty, A. J. P. (2000) In “Inhibitors of Matrix Metalloproteinases in Development and Disease” (Edwards, D., Hawkes, S., and Kokha, R., eds.) Gordon and Breach, Amsterdam, Holland, pp. 78–82.Google Scholar
  50. 50.
    Welgus, H.G., Jeffrey, J.J., Stricklin, G.P., Roswit, W.T., and Eisen, A.Z. (1980) Characteristics of the action of human skin fibroblast collagenase on fibrillar collagen. J. Biol. Chem. 255, 6806–6813.PubMedGoogle Scholar
  51. 51.
    Allan, J. A., Docherty, A. J., Barker, P. J., Huskisson, N. S., Reymolds, J. J., and Murphy, G. (1995) Binding of gelatinases A and B to type-I collagen and other matrix components. Biochem. J. 309, 299–306.PubMedGoogle Scholar
  52. 52.
    Steffensen, B., Bigg, H. F., and Overall, C. M. (1998) The involvement of the fibronectin type II-like modules of human gelatinase A in cell surface localization and activation. J. Biol. Chem. 273, 20,622–20,628.CrossRefGoogle Scholar
  53. 53.
    Olsen, M. W., Toth, M., Gervasi, D. C., Sado, Y., Ninomiya, Y., and Fridman, R. (1998) High affinity binding of latent matrix metalloproteinase-9 to the alpha 2 (IV) chain of collagen IV. J. Biol. Chem. 273, 10,672–10,681.Google Scholar
  54. 54.
    Basset, P., Bellocq, J. P., Wolf, C., et al. (1990) A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348, 699–704.PubMedCrossRefGoogle Scholar
  55. 55.
    Clark, I. M. and Cawston, T. E. (1989) Fragments of human fibroblast collagenase. Purification and characterization. Biochem. J. 263, 201–206.PubMedGoogle Scholar
  56. 56.
    Windsor, L. J., Birkedal-Hansen, H., Birkedal-Hansen, B., and Engler, J. A. (1991) An internal cysteine plays a role in the maintenance of the latency of human fibroblast collagenase. Biochem. 30, 641–647.CrossRefGoogle Scholar
  57. 57.
    Murphy, G., Allan, J. A., Willenbrock, F., Cockett, M. I., O’Connell, J. P., and Docherty, A. J. P. (1992) The role of the C-terminal domain in collagenase and stromelysin specificity. J. Biol. Chem. 267, 9612–9618.PubMedGoogle Scholar
  58. 58.
    Hirose, T., Patterson, C., Pourmotabbed, T., Mainardi, C. L., and Hasty, K. A. (1993) Structure-function relationship of human neutrophil collagenase: identification of regions responsible for substrate specificity and general proteinase activity. Proc. Natl. Acad. Sci. USA. 90, 2569–2573.PubMedCrossRefGoogle Scholar
  59. 59.
    Knauper, V., Cowell, S., Smith, B., et al. (1997) The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J. Biol. Chem. 272, 7608–7616.PubMedCrossRefGoogle Scholar
  60. 60.
    Murphy, G., Willenbrock, F., Ward, R. V., Cockett, M. I., Eaton, D., and Docherty, A. J. P. (1992) The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases. Biochem. J. 283, 637–641.PubMedGoogle Scholar
  61. 61.
    Morgunova, E., Tuuttila, A., Bergmann, U., Isupov, M., Lindqvist, Y., Schneider, G., Truggvason, K. (1999) Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science 284, 1667–1670.PubMedCrossRefGoogle Scholar
  62. 62.
    Owens, R. J. and Baralle, F. E. (1986) Mapping the collagen-binding site of human fibronectin by expression in Escherichia coli. EMBO. J. 5, 2825–2830.PubMedGoogle Scholar
  63. 63.
    Skorstengaard, K., Holtet, T. L., Etzerodt, M., and Thogersen, H. C. (1994) Collagen-binding recombinant fibronectin fragments containing type II domains. FEBS Lett. 343, 47–50.PubMedCrossRefGoogle Scholar
  64. 64.
    Ingham, K. C., Brew, S. A., and Migliorini, M. M. (1989) Further localization of the gelatin-binding determinants within fibronectin. Active fragments devoid of type II homologous repeat modules. J. Biol. Chem. 264, 16977–16980.PubMedGoogle Scholar
  65. 65.
    Banyai, L., Trexler, M., Koncz, S., Gyenes, M., Sipos, G., and Patthy, L. (1990) The collagen-binding site of type-II units of bovine seminal fluid protein PDC-109 and fibronectin. Eur. J. Biochem. 193, 801–806.PubMedCrossRefGoogle Scholar
  66. 66.
    Murphy, G., Nguyen, Q., Cockett, M. I., et al. (1994) Assessment of the role of the fibronectin-like domain of gelatinase A by analysis of a deletion mutant. J. Biol. Chem. 269, 6632–6636.PubMedGoogle Scholar
  67. 67.
    Banyai, L. and Patthy, L. (1991) Evidence for the involvement of type II domains in collagen binding by 72 kDa type IV procollagenase. FEBS Lett. 282, 23–25.PubMedCrossRefGoogle Scholar
  68. 68.
    Banyai, L., Tordai, H., and Patthy, L. (1994) The gelatin-binding site of human 72 kDa type IV collagenase (gelatinase A). Biochem. J. 298, 403–407.PubMedGoogle Scholar
  69. 69.
    Collier, E. E., Krasnov, P. A., Strongin, A. Y., Birkedal-Hansen, H., and Goldberg, G. I. (1992) Alanine scanning mutagenesis and functional analysis of the fibronectin-like collagen-binding domain from human 92-kDa type IV collagenase. J. Biol. Chem. 267, 6776–6781.PubMedGoogle Scholar
  70. 70.
    Abbey, R., Steffensen, B., and Overall, C. M. (2002) Differential substrate binding to the fibronectin type II modules of human gelatinase A. Evidence for cooperative binding sites. In preparation.Google Scholar
  71. 71.
    Shipley, J. M., Doyle, G. A. R., Fliszar, C. J., et al. (1996) The structural basis for the elastinolytic activity of the 92-kDa and 72-kDa gelatinases. Role of the fibronectin type II-like repeats. J. Biol. Chem. 271, 4335–4341.PubMedCrossRefGoogle Scholar
  72. 72.
    O’Farrell, T. J. and Pourmotabbed, T. (1998) The fibronectin-like domain is required for the type V and XI collagenolytic activity of gelatinase B. Arch. Biochem. Biophys. 354, 24–30.PubMedCrossRefGoogle Scholar
  73. 73.
    Ye, Q. Z., Johnson, L. L., Yu, A. E., and Hupe, D. (1995) Reconstructed 19 kDa catalytic domain of gelatinase A is an active proteinase. Biochemistry 34, 4702–4708.PubMedCrossRefGoogle Scholar
  74. 74.
    Brooks, P. C., Stromblad, S., Sanders, L. C., et al. (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85, 683–693.PubMedCrossRefGoogle Scholar
  75. 75.
    Bigg, H. F., Shi, Y. E., Liu, Y. E., Steffensen, B., and Overall, C. M. (1997) Specific, high affinity binding of tissue inhibitor of metalloproteinases-4 (TIMP-4) to the COOH-terminal hemopexin-like domain of human gelatinase A. TIMP-4 binds progelatinase A and the COOH-terminal domain in a similar manner to TIMP-2. J. Biol. Chem. 272, 15496–15500.PubMedCrossRefGoogle Scholar
  76. 76.
    Overall, C. M., Lowne, D., Wells, G., Burel, S., McCullouch, C. A. G., and Clements, J.M. (1999) Cloning, CHO Cell Expression, and Activation of Rat Collagenase-2 (MMP-8). J. Dent. Res. 78, (IADR Abstract), 458.Google Scholar
  77. 77.
    O’Connell, J. P., Willenbrock, F., Docherty, A. J. P., Eaton, D., and Murphy, G. (1994) Analysis of the role of the COOH-terminal domain in the activation, proteolytic activity, and tissue inhibitor of metalloproteinase interactions of gelatinase B. J. Biol. Chem. 269, 14967–14973.PubMedGoogle Scholar
  78. 78.
    Overall, C. M., King, A. E., Sam, D. K., et al. (1999) Identification of the tissue inhibitor of metalloproteinases-2 (TIMP-2) binding site on the hemopexin carboxyl domain of human gelatinase A by site-directed mutagenesis. The hierarchical role in binding TIMP-2 of the unique cationic clusters of hemopexin modules III and IV. J. Biol. Chem. 274, 4421–4429.PubMedCrossRefGoogle Scholar
  79. 79.
    Stetler-Stevenson, W. G., Krutzsch, H. C., and Liotta, L. A. (1989) Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J. Biol. Chem. 264, 17,374–17,378.Google Scholar
  80. 80.
    Howard, E. W. and Banda, M. J. (1991) Binding of tissue inhibitor of metalloproteinases 2 to two distinct sites on human 72-kDa gelatinase. Identification of a stabilization site. J. Biol. Chem. 266, 17,972–17,977.Google Scholar
  81. 81.
    Bigg, H. F., Morrison, C. J., Butler, G. S., et al. (2001) Tissue inhibitor of metalloproteinases-4 (TIMP-4) inhibits, but does not support, the activation of gelatinase A via efficient inhibition of membrane type 1-matrix metalloproteinase. Cancer Research 61, 3610–3618.PubMedGoogle Scholar
  82. 82.
    Koklitis, P. A., Murphy, G., Sutton, C., and Angal, S. (1991) Purification of recombinant human prostromelysin. Studies on heat activation to give high-Mr and low-Mr active forms, and a comparison of recombinant with natural stromelysin activities. Biochem. J. 276, 217–221.PubMedGoogle Scholar
  83. 83.
    Marcy, A. I., Eiberger, L. L., Harrison, R., et al. (1991) Human fibroblast stromelysin catalytic domain: expression, purification, and characterization of a C-terminally truncated from. Biochemistry 30, 6476–6483.PubMedCrossRefGoogle Scholar
  84. 84.
    Nomura, K., Shimizu, T., Kinoh, H., Sendai, Y., Inomata, M., and Suzuki, N. (1997) Sea urchin hatching enzyme (envelysin): cDNA cloning and deprivation of protein substrate specificity by autolytic degradation. Biochemistry 36, 7225–7238.PubMedCrossRefGoogle Scholar
  85. 85.
    Sodek, J. and Overall, C. M. (1992) Matrix metalloproteinases in periodontal tissue remodelling. Matrix Supplement 1, 352–362.Google Scholar
  86. 86.
    Aimes, R. T. and Quigley, J. P. (1995) Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J. Biol. Chem. 270, 5872–5876.PubMedCrossRefGoogle Scholar
  87. 87.
    Highberger, J. H., Corbett, C., and Gross, J. (1979) Isolation and characterization of a peptide containing the site of cleavage of the chick skin collagen alpha 1[I] chain by animal collagenases. Biochem. Biophys. Res. Comm. 89, 202–208.PubMedCrossRefGoogle Scholar
  88. 88.
    Welgus, H. G., Jeffrey, J. J., and Eisen, A. Z. (1981) Human Skin fibroblast collagenase. Assessment of activation energy and deuterium isotope effect with collagenous substrates. J. Biol. Chem. 256, 9516–9521.PubMedGoogle Scholar
  89. 89.
    De Souza, S. J., Pereira, H. M., Jacchieri, S., and Brentani, R. R. (1996) Collagen/collagenase interaction: Does the enzyme mimic the conformation of its own substrate? FASEB J. 10, 927–930.PubMedGoogle Scholar
  90. 90.
    De Souza, S. J. and Brentani, R. (1992) Collagen binding site in collagenase can be determined using the concept of sense-antisense peptide interactions. J. Biol. Chem. 267, 13,763–13,767.Google Scholar
  91. 91.
    Sanchez-Lopez, R., Alexander, C. M., Behrendtsen, O., Breathnach, R., and Werb, Z. (1993) Role of zinc-binding and hemopexin domain encoded sequences in the substrate specificity of collagenase and stromelysin-2 as revealed by chimeric proteins. J. Biol. Chem. 268, 7238–7247.PubMedGoogle Scholar
  92. 92.
    Knauper, V., Docherty, A. J. P., Smith, B., Tschesche, H., and Murphy, G. (1997) Analysis of the contribution of the hinge region of human neutrophil collagenase (HNC, MMP-8) to stability and collagenolytic activity by alanine scanning mutagenesis. FEBS Letters 405, 60–64.PubMedCrossRefGoogle Scholar
  93. 93.
    Overall, C. M. and Sodek, J. (1990) Concanavalin A produces a matrix-degradative phenotype in human fibroblasts. Induction and endogenous activation of collagenase, 72-kDa gelatinase, and Pump-1 is accompanied by the suppression of the tissue inhibitor of matrix metalloproteinases. J. Biol. Chem. 265, 21,141–21,151.Google Scholar
  94. 94.
    Strongin, A. Y., Collier, I., Bannikow, G., Marmer, B. L., Grant, G. A., and Goldberg, G. I. (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. J. Biol. Chem. 270, 5331–5338.PubMedCrossRefGoogle Scholar
  95. 95.
    Will, H., Atkinson, S. J., Butler, G. S., Smith, B., and Murphy, G. (1996) The soluble catalytic domain of membrane type I matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. J. Biol. Chem. 271, 17,119–17,123.CrossRefGoogle Scholar
  96. 96.
    Butler, G. S., Butler, M. J., Atkinson, S. J., et al. (1998) The TIMP-2 membrane type I metalloproteinase “receptor” regulates the concentration and efficient activation of progelatinase A. J. Biol. Chem. 273, 871–880.PubMedCrossRefGoogle Scholar
  97. 97.
    Crabbe, T., Joannou, C., and Docherty, A. J. P. (1993) Human progelatinase A can be activated by autolysis at a rate that is concentration-dependent and enhanced by heparin bound to the C-terminal domain. Eur. J. Biochem. 218, 431–438.PubMedCrossRefGoogle Scholar
  98. 98.
    Overall, C. M., Tam, E., McQuibban, G. A., et al. (2000) Domain interactions in the gelatinase A. TIMP-2.MT1-MMP activation complex. The ectodomain of the 44-kDa form of membrane type-1 matrix metalloproteinase does not modulate gelatinase A activation. J. Biol. Chem. 275, 39,497–39,506.CrossRefGoogle Scholar
  99. 99.
    Willenbrock, F., Crabbe, T., Slocombe, P. M., et al. (1993) The activity of the tissue inhibitors of metalloproteinases is regulated by C-terminal domain interactions: a kinetic analysis of the inhibition of gelatinase A. Biochemistry 32, 4330–4337.PubMedCrossRefGoogle Scholar
  100. 100.
    Saad, S., Gottlieb, D. J., Bradstock, K. F., Overall, C. M., and Bendall, L. J. (2002) Cancer Cell-associated Fibronectin Induces Release of Matrix Metalloproteinase-2 from Normal Fibroblasts. Cancer Res. 62, 283–289.PubMedGoogle Scholar
  101. 101.
    Gilles, C., Polette, M., Seiki, M., Birembaut, P., and Thompson, E. W. (1997) Implication of collagen type I-induced membrane-type 1-matrix metalloproteinase expression and matrix metalloproteinase-2 activation in the metastatic progression of breast carcinoma. Lab Invest. 76, 651–660.PubMedGoogle Scholar
  102. 102.
    Haas, T. L., Davis, S. J., and Madri, J. A. (1998) Three-dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1-MMP and MMP-2 in microvascular endothelial cells. J. Biol. Chem. 273, 3604–3610.PubMedCrossRefGoogle Scholar
  103. 103.
    Seftor, R. E. B., Seftor, E. A., Stetlet-Stevenson, W. G., and Hendrix, M. J. C. (1993) The 72 kDa type IV collagenase is modulated via differential expression of αvβ3 and α5β1 integrins during human melanoma cell invasion. Cancer Res. 53, 3411–3415.PubMedGoogle Scholar
  104. 104.
    Ellerbroek, S. M. and Stack, M. S. (1999) Membrane associated matrix metalloproteinases in metastasis. Bioessays 21, 940–949.PubMedCrossRefGoogle Scholar
  105. 105.
    Lohi, J., Lehti, K., Westermarck, J., Kahari, V., and Keski-Oja, J. (1996) Regulation of membrane-type matrix metalloproteinase-1 expression by growth factors and phorbol 12-myristate 13-acetate. Eur. J. Biochem. 239, 239–247.PubMedCrossRefGoogle Scholar
  106. 106.
    Lehti, K., Lohi, J., Valtanen, H., and Keski-Oja, J. Proteolytic processing of membrane-type-1 matrix metalloproteinase is associated with gelatinase A activation at the cell surface. Biochem. J. (1998) 334, 345–353.PubMedGoogle Scholar
  107. 107.
    Overall, C. M., Wrana, J. L., and Sodek, J. (1989) Independent Regulation of Collagenase, 72-kDa Progelatinase, and Metalloendoproteinase Inhibitor Expression in Human Fibroblasts by Transforming Growth Factor-β. J. Biol. Chem. 264, 1860–1869.PubMedGoogle Scholar
  108. 108.
    Overall, C. M., Wrana, J. L., and Sodek, J. (1991) Transcriptional and Post-transcriptional Regulation of 72-kDa Gelatinase/Type IV Collagenase by Transforming Growth Factor-β1 in Human Fibroblasts. Comparisons with Collagenase and Tissue Inhibitor of Matrix Metalloproteinase Gene Expression. J. Biol. Chem. 266, 14,064–14,071.Google Scholar
  109. 109.
    Litvinovich, S. V., Strickland, D. K., Medved, L. V., and Ingham, K. C. (1991) Domain structure and interactions of the type I and type II modules in the gelatin-binding region of fibronectin. All six modules are independently folded. J. Mol. Biol. 217, 563–575.PubMedCrossRefGoogle Scholar
  110. 110.
    Shirley, B. A., Stanswsens, P., Hahn, U., and Pace, N. C. (1992) Contribution of hydrogen bonding to the conformational stability of ribonuclease T1. Biochemistry 31, 725–732.PubMedCrossRefGoogle Scholar
  111. 111.
    Maurus, R., Overall, C. M., Bogumil, R., Luo, Y. I., Mauk, G., Smith, M., and Brayer, G. (1997) A myoglobin variant with a polar substitution in a conserved hydrophobic cluster in the heme binding pocket. Biochim. Biophys. Acta 1341, 1–13.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  1. 1.University of British ColumbiaVancouverCanada

Personalised recommendations