Molecular Biotechnology

, Volume 21, Issue 3, pp 241–250

Studying cytoskeletal dynamics in living cells using green fluorescent protein

  • Yisang Yoon
  • Kelly Pitts
  • Mark McNiven
Review

Abstract

Microfilaments, intermediate filaments, and microtubules are three major cytoskeletal systems providing cells with stability to maintain proper shape. Although the word “cytoskeleton” implicates rigidity, it is quite dynamic exhibiting constant changes within cells. In addition to providing cell stability, it participates in a variety of essential and dynamic cellular processes including cell migration, cell division, intracellular transport, vesicular trafficking, and organelle morphogenesis. During the past eight years since the green fluorescent protein (GFP) was first used as a marker for the exogenous gene expression, it has been an especially booming era for live cell observations of intracellular movement of many proteins. Because of the dynamic behavior of the cytoskeleton in the cell, GFP has naturally been a vital part of the studies of the cytoskeleton and its associated proteins. In this article, we will describe the advantage of using GFP and how it has been used to study cytoskeletal proteins.

Index Entries

GFP cytoskeleton motors living cells dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsien, R.Y. (1998) The Green Fluorescent Protein. Annu. Rev. Biochem. 67, 509–544.PubMedCrossRefGoogle Scholar
  2. 2.
    Haseloff, J. (1999) GFP variants for multispectral imaging of living cells. Method. Cell Biol. 58, 139–151.Google Scholar
  3. 3.
    Pepperkok, R., Squire, A., Geley, S., and Bastiaens, P.I. (1999) Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence life-time imaging microscopy. Curr. Biol. 9, 269–272.PubMedCrossRefGoogle Scholar
  4. 4.
    Mitra, R.D., Silva, C.M., and Youvan, D.C. (1996) Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein. Gene 173, 13–17.PubMedCrossRefGoogle Scholar
  5. 5.
    Day, R.N. (1998) Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy. Mol. Endocrine 12, 1410–1419.CrossRefGoogle Scholar
  6. 6.
    Mahajan, N.P., Linder, K., Berry, G., Gordon, G.W., Heim, R., and Herman, B. (1998) Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nat. Biotech. 16, 547–552.CrossRefGoogle Scholar
  7. 7.
    DeAngelis, D.A., Miesenbock, G., Zemelman, B.V., and Rothman, J.E. (1998) PRIM: proximity imaging of green fluorescent protein-tagged polypeptides. Proc. Nat. Acad. Sci. USA 95, 12312–12316.CrossRefGoogle Scholar
  8. 8.
    Westphal, M., Jungbluth, A., Heidecker, M., et al. (1997) Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein. Curr. Biol. 7, 176–183.PubMedCrossRefGoogle Scholar
  9. 9.
    Choidas, A., Jungbluth, A., Sechi, A., Murphy, J., Ullrich, A., and Marriott, G. (1998) The suitability and application of a GFP-actin fusion protein for long-term imaging of the organization and dynamics of the cytoskeleton in mammalian cells. Eur. J. Cell Biol. 77, 81–90.PubMedGoogle Scholar
  10. 10.
    Doyle, T., and Botstein, D. (1996) Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc. Natl. Acad. Sci. USA 93, 3886–3891.PubMedCrossRefGoogle Scholar
  11. 11.
    Verkhusha, V., Tsukita, S., and Oda, H. (1999) Actin dynamics in lamellipodia of migrating border cells in the Drosophila ovary revealed by a GFP-actin fusion. FEBS Lett. 445, 395–401.PubMedCrossRefGoogle Scholar
  12. 12.
    Fischer, M., Kaech, S., Knutti, D., and Matus, A. (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854.PubMedCrossRefGoogle Scholar
  13. 13.
    Ballestrem, C., Wehrle-Haller, B., and Imhof, B. (1998) Actin dynamics in living mammalian cells. J. Cell Sci 111, 1649–1658.PubMedGoogle Scholar
  14. 14.
    Heidemann, S., Kaech, S., Buxbaum, R., and Matus, A. (1999) Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J. Cell Biol 145, 109–122.PubMedCrossRefGoogle Scholar
  15. 15.
    Dabiri, G.A., Sanger, J.M., Portnoy, D.A., and Southwick, F.S. (1990) Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc. Natl. Acad. Sci. USA 87, 6068–6072.PubMedCrossRefGoogle Scholar
  16. 16.
    Tilney, L.G., and Portnoy, D.A. (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608.PubMedCrossRefGoogle Scholar
  17. 17.
    Robbins, J.R., Barth, A.I., Marquis, H., de Hostos, E.L., Nelson, W.J., and Theriot, J.A. (1999) Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. J. Cell Biol. 146, 1333–1350.PubMedCrossRefGoogle Scholar
  18. 18.
    Heinzen, R.A., Grieshaber, S.S., Van Kirk, L.S., and Devin, C.J. (1999) Dynamics of actin-based movement by Rickettsia rickettsii in vero cells. Infect. Immunol. 67, 4201–4207.Google Scholar
  19. 19.
    Yoon, M., Moir, R., Prahlad, V., and Goldman, R. (1998) Motile properties of vimentin intermediate filament networks in living cells. J. Cell Biol. 143, 147–157.PubMedCrossRefGoogle Scholar
  20. 20.
    Prahlad, V., Yoon, M., Moir, R., Vale, R., and Goldman, R. (1998) Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks. J. Cell Biol. 143, 159–170.PubMedCrossRefGoogle Scholar
  21. 21.
    Yoon, K.H., Yoon, M., Moir, R.D., Khuon, S., Flitney, F.W., and Goldman, R.D. (2001) Insights into the dynamic properties of keratin intermediate filaments in living epithelial cells. J. Cell Biol. 153, 503–516.PubMedCrossRefGoogle Scholar
  22. 22.
    Scott, E.S., and O’Hare, P. (2001) Fate of the inner nuclear membrane protein lamin B receptor and nuclear lamins in herpes simplex virus type 1 infection. J. Virol. 75, 8818–8830.PubMedCrossRefGoogle Scholar
  23. 23.
    Carminati, J., and Stearns, T. (1997) Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J. Cell Biol. 138, 629–641.PubMedCrossRefGoogle Scholar
  24. 24.
    Straight, A., Marshall, W., Sedat, J., and Murray, A. (1997) Mitosis in living budding yeast: anaphase A but no metaphase plate. Science 277, 574–578.PubMedCrossRefGoogle Scholar
  25. 25.
    Cleveland, D. (1988) Autoregulated instability of tubulin mRNAs: a novel eukaryotic regulatory mechanism. Trends Biochem. Sci. 13, 339–343.PubMedCrossRefGoogle Scholar
  26. 26.
    Ludin, B., and Matus, A. (1998) GFP illuminates the cytoskeleton. Trends Cell Biol. 8, 72–77.PubMedCrossRefGoogle Scholar
  27. 27.
    Rusan, N.M., Fagerstrom, C.J., Yvon, A.M., and Wadsworth, P. (2001) Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin. Mol. Biol. Cell 12, 971–980.PubMedGoogle Scholar
  28. 28.
    Mermall, V., Post, P., and Mooseker, M. (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279, 527–533.PubMedCrossRefGoogle Scholar
  29. 29.
    Moores, S., Sabry, J., and Spudich, J. (1996) Myosin dynamics in live Dictyostelium cells. Proc. Natl. Acad. Sci. USA 93 443–446.PubMedCrossRefGoogle Scholar
  30. 30.
    Yumura, S. (2001) Myosin II dynamics and cortical flow during contractile ring formation in Dictyostelium cells. J Cell Biol 154, 137–146.PubMedCrossRefGoogle Scholar
  31. 31.
    Gerald, N.J., Damer, C.K., O’Halloran, T.J., and De Lozanne, A. (2001) Cytokinesis failure in clathrinminus cells is caused by cleavage furrow instability. Cell Motil. Cytoskeleton 48, 213–223.PubMedCrossRefGoogle Scholar
  32. 32.
    Tuxworth, R.I., Weber, I., Wessels, D., et al. (2001) A role for myosin VII in dynamic cell adhesion. Curr Biol 11, 318–329.PubMedCrossRefGoogle Scholar
  33. 33.
    Moss, J., Price, A., Raz, E., Driever, W., and Rosenthal, N. (1996) Green fluorescent protein marks skeletal muscle in murine cell lines and zebrafish. Gene 173, 89–98.PubMedCrossRefGoogle Scholar
  34. 34.
    Hirokawa, N. (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526.PubMedCrossRefGoogle Scholar
  35. 35.
    Hirokawa, N., Noda, Y., and Okda, Y. (1998) Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr. Opin. Cell Biol. 10, 60–73.PubMedCrossRefGoogle Scholar
  36. 36.
    Huyett, A., Kahana, J., Silver, P., Zeng, X., and Saunders, W. (1998) The Kar3p and Kip2p motors function antagonistically at the spindle poles to influence cytoplasmic microtubule numbers. J. Cell Sci. 111, 295–301.PubMedGoogle Scholar
  37. 37.
    Miller, R., Heller, K., Frisen, L., Wallack, D., Loayza, D., Gammie, A., and Rose, M. (1998) The kinesin-related proteins, Kip2p and Kip3p, function differently in nuclear migration in yeast. Mol. Biol. Cell 9, 2051–2068.PubMedGoogle Scholar
  38. 38.
    Endow, S., and Komma, D. (1996) Centrosome and spindle function of the Drosophila Ncd microtubule motor visualized in live embryos using Ncd-GFP fusion proteins. J. Cell Sci. 109, 2429–2442.PubMedGoogle Scholar
  39. 39.
    Zhou, H.M., Brust-Mascher, I., and Scholey, J.M. (2001) Direct visualization of the movement of the monomeric axonal transport motor UNC-104 along neuronal processes in living Caenorhabditis elegans. J. Neurosci. 21, 3749–3755.PubMedGoogle Scholar
  40. 40.
    Gibbons, I. (1981) Cilia and flagella of eukaryotes. J. Cell Biol. 91, 107s-124s.PubMedCrossRefGoogle Scholar
  41. 41.
    Vallee, R., Wall, J., Paschal, B., and Shpetner, H. (1988) Microtubule-associated protein 1C from brain is a two-headed cytosolic dynein. Nature 332, 561–563.PubMedCrossRefGoogle Scholar
  42. 42.
    Holzbaur, E., and Vallee, R. (1994) DYNEINS: molecular structure and cellular function. Ann. Rev. Cell Biol. 10, 339–372.PubMedGoogle Scholar
  43. 43.
    Criswell, P., Ostrowski, L., and Asai, D. (1996) A novel cytoplasmic dynein heavy chain: expression of DHC1b in mammalian ciliated epithelial cells. J. Cell Sci. 109, 1891–1898.PubMedGoogle Scholar
  44. 44.
    Vaisberg, E., Grisson, P., and McIntosh, J. (1996) Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J. Cell Biol. 1996, 831–842.CrossRefGoogle Scholar
  45. 45.
    Shaw, S., Yeh, E., Salmon, E., and Bloom, K. (1996) Digital time-lapsed DIC/Fluorescence imaging of dynein-GFP reveals dynamics of astral microtubules in Saccharomyces cerevisiae throughout the cell cycle. Mol. Biol. Cell 7s, 398a.Google Scholar
  46. 46.
    Shaw, S., Yeh, E., Maddox, P., Salmon, E., and Bloom, K. (1997) Astral microtubule dynamics in yeast: a microtubule-based searching mechanism for spindle orientation and nuclear migration into the bud. J. Cell Biol. 139, 985–994.PubMedCrossRefGoogle Scholar
  47. 47.
    Xiang, X., Han, G., Winkelmann, D.A., Zuo, W., and Morris, N.R. (2000) Dynamics of cytoplasmic dynein in living cells and the effect of a mutation in the dynactin complex actin-related protein Arp1. Curr. Biol. 10, 603–606.PubMedCrossRefGoogle Scholar
  48. 48.
    McNiven, M. 1998. Dynamin: a molecular motor with pinchase action. Cell 94, 151–154.PubMedCrossRefGoogle Scholar
  49. 49.
    Obar, R.A., Collins, C.A., Hammarback, J.A., Shpetner, H.S., and Vallee, R.B. (1990) Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature 347, 256–261.PubMedCrossRefGoogle Scholar
  50. 50.
    Shpetner, H., and Vallee, R. (1989) Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59, 421–432.PubMedCrossRefGoogle Scholar
  51. 51.
    Cook, T.A., Urrutia, R., and McNiven, M.A. (1994) Identification of dynamin 2, an isoform ubiquitously expressed in rat tissues. Proc. Natl. Acad. Sci. USA 91, 644–648.PubMedCrossRefGoogle Scholar
  52. 52.
    Sontag, J.-M., Fykse, E.M., Ushkaryov, Y., Liu, J.-P., Robinson, P.J., and Südhof, T.C. (1994) Differential expression and regulation of multiple dynamins. J. Biol. Chem. 269, 4547–4554.PubMedGoogle Scholar
  53. 53.
    Nakata, T., Takemura, R., and Hirokawa, N. (1993) A novel member of the dynamin family of GTP-binding proteins is expressed specifically in the testis. J. Cell Sci. 105, 1–5.PubMedGoogle Scholar
  54. 54.
    Cook, T.A., Mesa, K., and Urrutia, R. (1996) Three dynamin-encoding genes are differentially expressed in developing rat brain. J. Neurochem. 67 927–931.PubMedGoogle Scholar
  55. 55.
    Cao, H., Garcia, F. and McNiven, M. (1998) Differential distribution of dynamin isoforms in mammalian cells. Mol. Biol. Cell 9, 2595–2609.PubMedGoogle Scholar
  56. 56.
    Presley, J., Cole, N., Schroer, T., Hirschberg, K., Zaal, K., and Lippincott-Schwartz, J. (1997) ER-to-Golgi transport visualized in living cells. Nature 389, 81–85.PubMedCrossRefGoogle Scholar
  57. 57.
    Suzuki, Y., Yasunaga, T., Ohkura, R., Wakabayashi, T., and Sutoh, K. (1998) Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature 396, 380–383.PubMedCrossRefGoogle Scholar
  58. 58.
    Iwane, A., Funatsu, T., Harada, Y., et al. (1997) Single molecular assay of individual ATP turnover by a myosin-GFP fusion protein expressed in vitro. FEBS Lett. 407, 235–238.PubMedCrossRefGoogle Scholar
  59. 59.
    Romberg, L., Pierce, D., and Vale, R. (1998) Role of the kinesin neck region in processive microtubule-based motility. J. Cell Biol. 140, 1407–1416.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  • Yisang Yoon
    • 1
  • Kelly Pitts
  • Mark McNiven
  1. 1.Center for Basic Research in Digestive Diseases and Dept. of Biochemistry and Molecular BiologyMayo ClinicRochester

Personalised recommendations