Advertisement

Molecular Biotechnology

, Volume 20, Issue 3, pp 261–283 | Cite as

Resistance to tetracycline, macrolide-lincosamide-streptogramin, trimethoprim, and sulfonamide drug classes

  • Mariyn C. RobertsEmail author
Review

Abstract

The discovery and use of antimicrobial agents in the last 50 yr has been one of medicine’s greatest achievements. These agents have reduced morbidity and mortality of humans and animals and have directly contributed to human’s increased life span. However, bacteria are becoming increasingly resistant to these agents by mutations, which alter existing bacterial proteins, and/or acquisition of new genes, which provide new proteins. The latter are often associated with mobile elements that can be exchanged quickly across bacterial populations and may carry multiple antibiotic genes fo resistance. In some case, virulence factors are also found on these same mobile elements. There is mounting evidence that antimicrobial use in agriculture, both plant and animal, and for environmental purposes does influence the antimicrobial resistant development in bacteria important in humans and in reverse. In this article, we will examine the genes which confer resistance to tetracycline, macrolide-lincosamide-streptogramin (MLS), trimethoprim, and sulfonamide.

Index Entries

Tetracycline macrolide-lincosamide-streptogramin trimethoprim sulfonamide resistance genes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levy, S. B. (1992) The antibiotic paradox: how miracle drugs are destroying the miracle. Plenum Press, New York.Google Scholar
  2. 2.
    Falkow, S. (1975) Infectious multiple drug resistance. Pion Limited, London England.Google Scholar
  3. 3.
    Chopra, I., Hawkey, P. M., and Hinton, M. (1992) Tetracyclines, molecular and clinical aspects. J. Antimicrob. Chemother. 29, 245–277.PubMedCrossRefGoogle Scholar
  4. 4.
    Levy, S. B. (1988) Tetracycline resistance determinants are widespread. ASM News 54, 418–421.Google Scholar
  5. 5.
    Klein, N. C. and Cunha, B. A. (1995) Tetracyclines. Medical Clinics N. America 79, 789–801.Google Scholar
  6. 6.
    Freeman, C. D., Nightingale, C. H., and Quintiliani, R. (1994) Minocycline: old and new therapeutic uses. Int J. Antimicrob. Agents 4, 325–335.CrossRefPubMedGoogle Scholar
  7. 7.
    Roberts M. C. (1989) Gene transfer in the urogenital and respiratory tract, in Gene Transfer in the Environment (Levy, S. and Miller, R. V., eds.) pp. 347–375. McGraw-Hill Publishing Co., New York.Google Scholar
  8. 8.
    Col, N. F. and O’Connor, R. W. (1987) Estimating worldwide current antibiotic usage: Report of task force 1. Reviews Infect. Dis. 9, S232-S243.Google Scholar
  9. 9.
    Levy, S. B. (1984) Resistance to the tetracyclines, pp. 191–240. In L.E. Bryan (ed.), Antimicrobial Drug Resistance Academic Press, Orlando, Fl.Google Scholar
  10. 10.
    Hughes, V. M. and Datta, N. (1983) Conjugative plasmids in bacteria of the “pre-antibiotic” era. Nature 302, 725–726.PubMedCrossRefGoogle Scholar
  11. 11.
    Dancer, S. J., Shears, P., and Platt, D. J. (1997) Isolation and characterization of coliforms from glacial ice and water in Canada’s high arctic. J. Appl. Microbiol. 82, 597–609.PubMedGoogle Scholar
  12. 12.
    Akiba, T., Koyama, K., Ishiki, Y., Kimura, S., and Fukushima, T. (1960) On the mechanism of the development of multiple-drug-resistant clones of Shigella. Japan J. Microbiol. 4, 219.Google Scholar
  13. 13.
    Watanabe, T. (1963) Infectious heredity of multiple drug resistance in bacteria. Bacteriol. Rev. 27, 87–115.PubMedGoogle Scholar
  14. 14.
    Lima, A. A. M., Lima, N. L., Pinho, M. C., et al. (1995) High frequency of strains multiply resistant to ampicillin, trimethoprim-sulfamethoxazole, streptomycin, chloramphenicol, and tetracycline isolated from patients with shigellosis in northeastern Brazil during the period 1988 to 1993. Antimicrob. Agents Chemother. 39, 256–259.PubMedGoogle Scholar
  15. 15.
    Roberts, M. C. (1994) Epidemiology of tetracycline resistance determinants. Trends Microbiol. 2, 353–357.PubMedCrossRefGoogle Scholar
  16. 16.
    Roberts, M. C. and Kenny, G. E. (1986) Dissemination of the tetM tetracycline resistance determinant to Ureaplasma urealyticum. Antimicrob. Agents Chemother. 29, 350–352.PubMedGoogle Scholar
  17. 17.
    Mendez, B., Tachibana, C., and Levy, S. B. (1980) Heterogeneity of tetracycline resistance determinants. Plasmid 3, 99–108.PubMedCrossRefGoogle Scholar
  18. 18.
    Levy, S. B., McMurry, L. M., et al. (1989) Nomenclature for tetracycline resistance determinants. Antimicrob. Agents Chemother. 33, 1373–1374.PubMedGoogle Scholar
  19. 19.
    Levy, S. B., McMurry, L. M., Barbosa, T. M., et al. (1999) Nomenclature for new tetracycline resistance determinants. Antimicrob. Agents Chemother. 43, 1523–1524.PubMedGoogle Scholar
  20. 20.
    Benveniste, R. and Davies, J. (1973) Aminoglycoside antibiotic-inactivation enzymes in actinomycetes similar to those present in clinical isolates of antibiotic resistant bacteria. Proc. Natl. Acad Sci. USA 172, 3628–3632.Google Scholar
  21. 21.
    Sloan, J., McMurry, L. M., Lyras, D., Levy S. B., and Rood, J. I. (1994) The Clostridium perfringens Tet P determinant comprises two overlapping genes: tetA(P), which mediates active tetracycline efflux, and tetB(P), which is related to the ribosomal protection family of tetracycline-resistance determinants. Molec. Microbiol. 11, 403–415.CrossRefGoogle Scholar
  22. 22.
    Ridenhour, M. B., Fletcher, H. M., Mortensen, J. E., and Daneo-Moore, L. (1996) A novel tetracycline-resistant determinant, tet(U), is encoded on the plasmid pKQ10 in Enterococcus faecium. Plasmid 35, 71–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Roberts, M. C., Pang, Y., Riley, D. E., Hillier, S. L., Berger, R. C., and Krieger, J. N. (1993) Detection of Tet M and Tet O tetracycline resistance genes by polymerase chain reaction. Molec. Cell. Probes 7, 387–393.PubMedCrossRefGoogle Scholar
  24. 24.
    Pang, Y., Bosch, T., and Roberts, M. C. (1994) Single polymerase chain reaction for the detection of tetracycline resistant determinants Tet K and Tet L. Molec. Cell. Probes 8, 417–422.PubMedCrossRefGoogle Scholar
  25. 25.
    Roberts, M. C. (1996) Mechanism, regulation, mobility and distribution of tetracycline-resistant determinants. FEMS Microbiol. Rev. 19, 1–24.PubMedCrossRefGoogle Scholar
  26. 26.
    Bolhuis, H., van Veen H. W., Poolman, B., Driessen, A. J. M., and Konings, W. N. (1997) Mechanisms of multidrug transporters. FEMS Microbiol. Rev. 21, 55–84.PubMedCrossRefGoogle Scholar
  27. 27.
    Ouellett, M. and Kundig, C. (1997) Microbial multidrug resistance. Internat. J. Antimicrob. Agents 8, 179–187.CrossRefGoogle Scholar
  28. 28.
    Nikaido, H. (1998) Multidrug efflux pumps of Gram-negative bacteria. J. Bacteriol. 178, 5853–5859,Google Scholar
  29. 29.
    Nikaido, H. (1998) Multiple antibiotic resistance and efflux. Curr. Opin. Microbiol. 1, 516–523.PubMedCrossRefGoogle Scholar
  30. 30.
    Nikaido, H. and Thanassi, D. G. (1993) Penetration of lipophilic agents with multiple protonation sites into bacterial cells: tetracyclines and fluroquinolones as examples. Antimicrob. Agents Chemother. 37, 1393–1399.PubMedGoogle Scholar
  31. 31.
    Chopra, I. and Roberts, M. C. (2001) Tetracycline antibiotics: mode of action, applications, molecular biology and epidemiology of bacterial resistance. Microbiol. Mol. Bio.Rev. 65, 232–260.CrossRefGoogle Scholar
  32. 32.
    Ross, J. I., Eady, E. A., Cove, J. H., and Cunliffe, W. U. (1998) 16S rRNA mutation associated with tetracycline resistance in a Gram-positive bacterium Antimicrob. Agents Chemother. 42, 1702–1705.Google Scholar
  33. 33.
    Kirst, H. A. (1991) New macrolides: expanded horizons for an old class of antibiotics. J. Antimicrob. Chemother. 28, 787–790.PubMedCrossRefGoogle Scholar
  34. 34.
    Weisblum, B. (1995) Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577–585.PubMedGoogle Scholar
  35. 35.
    Leclercq, R. and Courvalin, P. (1991) Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob. Agents Chemother. 35, 1267–1272.PubMedGoogle Scholar
  36. 36.
    Roberts, M.C., Sutcliffe, J., Courvalin, P., Jensen, L.B., Rood, J., and Seppala, H. (1999) Nomenclature for macrolide and macrolide-lincosamide streptogramin B antibiotic resistance determinants. Antimicrob. Agents Chemother. 43, 2823–2830.PubMedGoogle Scholar
  37. 37.
    Tait-Kamradt, A., Davies, T., Appelbaum, P. C., et al. (2000) Two new mechanisms of macrolide resistance in clinical strains of Streptococcus pneumoniae from Eastern Europe and North America. Antimicrob. Agents Chemother. 44, 3395–3401.PubMedCrossRefGoogle Scholar
  38. 38.
    Vester, B. and Douthwaite, S. (2001) Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob. Agents Chemother. 45, 1–12.PubMedCrossRefGoogle Scholar
  39. 39.
    Depardieu, F. and Courvalin, P. (2001) Mutation in 23S rRNA responsible for resistance to 16-membered macrolides and streptogramins in Streptococcus pneumnoniae. Antimicrob. Agents Chemother. 45, 319–323.PubMedCrossRefGoogle Scholar
  40. 40.
    Taylor, D. E., Ge, Z., Purych, D., Lo, T., and Hiratsuka, K. (1997) Cloning and sequence analysis of two copies of a 23S rRNA gene from Helicobacter pylori and association of clarithromycin resistance with 23S rRNA mutations. Antimicrob. Agents Chemother. 43, 2621–2628.Google Scholar
  41. 41.
    Tait-Kamradt, A., Davies, T., Cronan, M., Jacobs, M. R., Appelbaum, P. C., and Sutcliffe, J. (2000) Mutations in 23S rRNA and L4 ribosomal protein account for resistance in pneumococcal strains selected in vitro by macrolide passage. Antimicrob. Agents Chemother. 44, 2118–2125.PubMedCrossRefGoogle Scholar
  42. 42.
    Huovinen, P., Sundstrom, L., Swedberg, G., and Skold, O. (1995) Trimethoprim and sulfonamide resistance. Antimicrob. Agents Chemother. 39, 279–289.PubMedGoogle Scholar
  43. 43.
    Rouch, D. A., Messerotti, L. J., Loo, S. L., Jackson, C. A., and Skurray, R. A. (1989) Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrolfolate reductase and thymidylate synthetase flanked by three copies of IS257. Molec. Microbiol. 3, 161–175.CrossRefGoogle Scholar
  44. 44.
    Charpentier, E. and Courvalin, P. (1997) Emergence of a new class of trimethoprim resistance gene dfrD in Listeria monocytogenes BM4293. Antimicrob. Agents Chemother. 41, 1134–1136.PubMedGoogle Scholar
  45. 45.
    Frosolono, M., Hodel-Christian, S. L., and Murray, B. E. (1991) Lack of homology of enterococci which have high-level resistance to trimethoprim with the dfrA gene of Staphylococcus aureus. Antimicrob. Agents Chemother. 35, 1928–1930.PubMedGoogle Scholar
  46. 46.
    Frosolono, K. M., Hodel-Christian, S. L., and Murray, B. E. (1997) Lack of homology of enterococci which have high-level resistance to trimethoprim with the drfA gene of Staphyloccocus aureus. Antimicrob. Agents Chemother. 35, 1928–1930.Google Scholar
  47. 47.
    Rudolph, K. M., Parkinson, A., and Roberts, M. C. (2001) Mechanisms of erythromycin and trimethoprim resistance in the Alaska Streptococcus pneumoniae serotype 6B clone. J. Antimicrob. Chemother. 48, 317–319.PubMedCrossRefGoogle Scholar
  48. 48.
    Dowson, D. G., Coffey, T. J., and Spratt, B. G. (1994) Origin and molecular epidemiology of penicillin-binding-protein-mediated resistance to β-lactam antibiotics. Trends Microbiol. 2, 361–366.PubMedCrossRefGoogle Scholar
  49. 49.
    Adrian, P. V. and Klugman., K. P. (1997) Mutations in the dihydrofolate reductase gene of trimethoprim-resistant isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 41, 2406–2413.PubMedGoogle Scholar
  50. 50.
    Adrian, P. V., Thomson, C. J., Klugman, K. P., and Amyes, S. G. B. (2000) New gene cassettes for trimethoprim resistance, dfr13, and streptomycin-spectinomycin resistance, aadA4, inserted on a class 1 intergron. Antimicrob. Agents Chemother. 44, 355–361.PubMedCrossRefGoogle Scholar
  51. 51.
    Singh, K. V., Malathum, K., and Murray, B. E. (2001) Disruption of an Enterococcus faecium species-specific gene, a homologue of acquired macrolide resistance genes of staphylococci, is associated with an increase in macrolide susceptibility. Antimicrob. Agents Chemother. 45, 263–266.PubMedCrossRefGoogle Scholar
  52. 52.
    Maskell, J. P., Sefon, A. M., and Hall, L. M. C. (1997) Mechanisms of sulfonamide resistance in clinical isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 41, 2121–2126.PubMedGoogle Scholar
  53. 53.
    Haasum, Y., Strom, K., Wehelie, R., Luna, V., Roberts, M. C., Maskell, J., Hall, L.M.C., and Swedberg, G. (2001) Amino acid repetitions in dihydropteroate synthase of Streptococcus pneumoniae are sufficient for development of sulfonamide resistance and lead to limited consequences for enzyme characteristics. Antimicrob. Agents Chemother. 45, 805–509.PubMedCrossRefGoogle Scholar
  54. 54.
    Jones, C. S., Osborne, D. J., and Stanley, J. (1992) Cloning of a probe for a previously undescribed enterobacterial tetracycline resistance gene. Lett. Appl. Microb. 15, 106–108.Google Scholar
  55. 55.
    Roberts, M. C., Hillier, S. L., Hale, J., Holmes, K. K., and Kenny, G. E. (1986) Tetracycline resistance and tetM in pathogenic urogenital bacteria. Antimicrob. Agents Chemother. 30, 810–812.PubMedGoogle Scholar
  56. 56.
    Roberts, M. C. and Kenny, G. E. (1986) Dissemination of the tetM tetracycline resistance determinant to Ureaplasma urealyticum. Antimicrob. Agents Chemother. 29, 350–352.PubMedGoogle Scholar
  57. 57.
    Roberts, M. C. (1989) Plasmid-mediated Tet M in Haemophilus ducreyi. Antimicrob. Agents Chemother. 33, 1611–1613.PubMedGoogle Scholar
  58. 58.
    Roe, D. E., Roberts, M. C., Braham, P., and Weinberg, A. (1995) Characterization of tetracycline resistance in Actinobacillus actinomycetemcomitans. Oral Microbiol. Immun. 10, 227–232.Google Scholar
  59. 59.
    Arthur, M., Molinas, C., Mabilat, C., and Courvalin, P. (1990) Detection of erythromycin resistance by the polymerase chain reaction using primers in conserved regions of erm rRNA methylase genes. Antimicrob. Agents Chemother. 34, 2024–2026.PubMedGoogle Scholar
  60. 60.
    Lacrox, J-M. and Walker, C. B. (1995) Detection and incidence of the tetracycline resistance determinant tet(M) in the microflora associated with adult periodontitis. J. Perio. 66, 102–108.Google Scholar
  61. 61.
    Olsvik, B., Olsen, I., and Tenover, F. C (1995) Detection of tet(M) and tet(O) using the polymerase chain reaction in bacteria isolated from patients with periodontal disease. Oral Microbiol. Immun. 10, 87–92.Google Scholar
  62. 62.
    Chung, W. O., Werckenthin, C., Schwarz, S., and Roberts, M. C. (1999) Host range of the ermF rRNA methylase gene in human and animal bacteria. J. Antimicrob. Chemother. 43, 5–14.PubMedCrossRefGoogle Scholar
  63. 63.
    Luna, V. A. and Roberts, M. C. (1998) The presence of the tetO gene in a variety of tetracycline-resistant Streptococcus pneumoniae serotypes from Washington State. J. Antimicrob. Chemoth. 42, 613–619.CrossRefGoogle Scholar
  64. 64.
    Andres, M. T., Chung, W. O., Roberts, M. C. and Fierro, J. F. (1998) Antimicrobial susceptibilities of Porphyromonas gingivalis, Prevotella intermedia and Prevotella nigrescens isolated in Spain. Antimicrob. Agents Chemother. 42, 3022,3023.PubMedGoogle Scholar
  65. 65.
    Luna, V. A., Cousin, S., Jr., Whittington, W. L. H. and Roberts, M. C. (2000) Identification of the conjugative mef gene in clinical Acinetobacter junii and Neisseria gonorrhoeae isolates. Antimicrob. Agents Chemother. 44, 2503–2506.PubMedCrossRefGoogle Scholar
  66. 66.
    Roberts, M. C., Chung, W. O., Roe, et al. (1999) Erythromycin resistant Neisseria gonorrhoeae and oral commensal Neisseria spp. carry known rRNA methylase genes. Antimicrob. Agents Chemother. 43, 1367–1372.PubMedGoogle Scholar
  67. 67.
    Pang, Y., Brown, B. A., Steingrube, V. A., Wallace, R. J. Jr., and Roberts, M. C. (1994) Acquisition of gram-positive tetracycline resistance genes in Mycobacterium and Streptomyces species. Antimicrob. Agents Chemother. 38, 1408–1412.PubMedGoogle Scholar
  68. 68.
    National Committee for Clinical Laboratory Standards. (1998) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 3rd ed. Approved Standards M7-A4, M100-S8. National Committee for Clinical Laboratory Standards. Wayne, PA.Google Scholar
  69. 69.
    Pernodet, J-L., Fish, S., Blondelet-Rouault, M-H., and Cundliffe, E. (1996) The macrolide-lincosamide-streptogramin B resistance phenotypes characterized by using a specifically deleted, antibiotic-sensitive strain of Streptomyces lividans. Antimicrob. Agents Chemother. 40, 581–585.PubMedGoogle Scholar
  70. 70.
    Dittrich, W. and Schrempf, H. (1992) The unstable tetracycline resistance gene of Streptomyces lividans 1326 encodes a putative protein with similarities to translational elongation factors and Tet (M) and Tet (O) proteins. Antimicrob. Agents Chemother. 36, 1119–1124.PubMedGoogle Scholar
  71. 71.
    Roberts, M., Elwell, L. P., and Falkow, S. (1997) Molecular characterization of two beta-lactamase-specifying plasmids isolated from Neisseria gonorrhoeae. J. Bacteriol. 131, 557–563.Google Scholar
  72. 72.
    Schwarz, S. K., Zenilman, J. M., Schnell, D., et al. (1990) National surveillance of antimicrobial resistance in Neisseria gonorrhoeae. JAMA 264, 1413–1417.CrossRefGoogle Scholar
  73. 73.
    Lina, G., Quaglia, A., Reverdy, M-E., Leclercq, R., Vandenesch, R., and Etienne, J. (1999) Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob. Agents Chemother. 43, 1062–1066.PubMedGoogle Scholar
  74. 74.
    Roberts, M. C. and Brown, M. B. (1994) Macrolide-lincosamide resistance determinants in streptococcal species isolated from the bovine mammary gland. Vet. Microbiol. 40, 253–261.PubMedCrossRefGoogle Scholar
  75. 75.
    Radstrom, P., Fermer, C., Kristiansen, B.-E., Jenkins, A., Skold, O., and Swedberg, G. (1992) Transformational exchanges in the dihydropteroate synthase gene of Neisseria meningitidis: a novel mechanism for acquisition of sulfonamide resistance. J. Bacteriol. 174, 6386–6393.PubMedGoogle Scholar
  76. 76.
    Gibreel, Am. and Skold, O. (2000) An integron cassette carrying dfr1 with 90-bp repeat sequences located on the chromosome of trimethoprim-resistant isolates of Campylobacter jejuni. Microbial Drug Resist. 6, 91–98.CrossRefGoogle Scholar
  77. 77.
    Galbo, V., Carattoli, A., Tosini, F., Pezzella, C., Dionisi, A. M., and Luzzi, I. (1999) Antibiotic resistance conferred by a conjugative plasmid and a class I integron in Vibrio cholerae O1 El Tor strains isolated in Albania and Italy. Antimicrob. Agents Chemother. 43, 693–696.Google Scholar
  78. 78.
    Seoane, A. and Lobo, J. M. G. (2000) Identification of a streptogramin A acetyltransferase gene in the chromosome of Yersinia enterocolitica. Antimicrob. Agents Chemother. 44, 905–909.PubMedCrossRefGoogle Scholar
  79. 79.
    Roberts, M. C. (1998) Antibiotic resistance in oral/respiratory bacteria. Crit. Rev. Oral Bio. Med. 9, 522–540.CrossRefGoogle Scholar
  80. 80.
    Nikolich, M. P., Shoemaker, N. B., and Salyers, A. A. (1992) A Bacteroides tetracycline resistance gene represents a new class of ribosome protection tetracycline resistance. Antimicrob. Agents Chemother. 36, 1005–1012.PubMedGoogle Scholar
  81. 81.
    Hansen, L. M., Blanchard, P. C., and Hirsh, D. C. (1996) Distribution of tet(H) among Pasteurella isolates from the United States and Canada. Antimicrob. Agents Chemother. 40, 1558–1560.PubMedGoogle Scholar
  82. 82.
    Lyras, D. and Rood., J. I. (1996) Genetic organization and distribution of tetracycline resistance determinants in Clostridium perfringens. Antimicrob. Agents Chemother. 40, 2500–2504.PubMedGoogle Scholar
  83. 83.
    Leng, Z., Riley, D. E., Berger, R. E., Krieger, J. N., and Roberts, M. C. (1997) Distribution and mobility of the tetracycline resistance determinant tetQ. J. Antimicrob Chemoth. 40, 551–559.CrossRefGoogle Scholar
  84. 84.
    De Rossi, E., Blokpoel, M. C. J., Cantoni, R., et al. (1998) Molecular cloning and functional analysis of a novel tetracycline resistance determinant tet(V), from Mycobacterium smegmatis. Antimicrob. Agents Chemother. 42, 1931–1937.PubMedGoogle Scholar
  85. 85.
    Scott, K. P., Melville, C. M., Barbosa, T. M., and Flint, H. J. (2000) Occurrence of the new tetracycline resistance gene tet(W) in bacteria from the human gut. Antimicrob. Agents Chemother. 44, 775–777.PubMedCrossRefGoogle Scholar
  86. 86.
    Rachek, L. I., Hines, A., Tucker, A. M., Winkler, H. H., and Wood, D. O. (2000) Transformation of Rickettsia prowazekii to erythromycin resistance encoded by the Escherichia coli ereB gene. J. Bacteriol. 182, 3289–3291.PubMedCrossRefGoogle Scholar
  87. 87.
    Bozdogan, B., Berrezouga, L., Kuo M-S., et al. (1999) A new resistance gene, linB, conferring resistance to lincosamides by nucleotidulation in Enterococcus faecuium HM1025. Antimicrob. Agents Chemother. 43, 925–929.PubMedGoogle Scholar
  88. 88.
    Taniguchi, K., Nakamura, A., Tsurubuchi, K., Ishii, A., O’Hara, K., and Sawai, T. (1999) Identification of functional amino acids in the macrolide 2′-phosphotransferase II. Antimicrob. Agents Chemother. 43, 2063–2065.PubMedGoogle Scholar
  89. 89.
    Allignet, J., Liassine, N., and El Solh, N. (1998) Characterization of a staphylococcal plasmid related to pUB110 and carrying two novel genes, vatC and vgbB, encoding resistance to streptogramins A and B and similar antibiotics. Antimicrob. Agents Chemother. 42, 1794–1798.PubMedGoogle Scholar
  90. 90.
    Hammerum, A. M., Jensen, L. B., and Aarestrup, F. M. (1998) Detection of the satA gene and transferability of virginiamycin resistance in Enterococcus faecium from food-animals. FEMS Microbiol. Lett. 168, 145–151.PubMedCrossRefGoogle Scholar
  91. 91.
    Adrian, P. V., Thomson, C. J., Klugman, K. P., and Amyes, S. G. B. (1998) New gene cassettes for trimethoprim resistance, dfr13, and streptomycin-spectinomycin resistance, aadA4, inserted on a class 1 integron. Antimicrob. Agents Chemother. 44, 355–361.CrossRefGoogle Scholar
  92. 92.
    Jones, C. S., Osborne, D. J., and Stanley, J. (1992) Enterobacterial tetracycline resistance in relation to plasmid incompatibility. Molec. Cell. Probes 313–317.Google Scholar
  93. 93.
    Aoki, T., Satoh, T., and Kitao, T. (1987) New tetracycline resistance determinant on R-plasmids from Vibrio anguillarum. Antimicrob. Agents Chemother. 31, 1446–1449.PubMedGoogle Scholar
  94. 94.
    Hansen, L. M., McMurry, L. M., Levy, S. B., and Hirsch, D. C. (1993) A new tetracycline resistance determinant, Tet H, from Pasterurella multocida specifying active efflux of tetracycline. Antimicrob. Agents Chemother. 37, 2699–2705.PubMedGoogle Scholar
  95. 95.
    Zilhao, R., Papadopoulou, B., and Courvalin, P. (1988) Occurrence of Campylobacter resistance gene tetO in Enterococcus and Streptococcus spp. Antimicrob. Agents Chemother. 32, 1793–1796.PubMedGoogle Scholar
  96. 96.
    Chaslus-Dancla, E., Lesage-Descauses, M-C., Leroy-Setrin, S., Martel, J-L., and Lafont, J-P. (1995) Tetracycline resistance determinants, Tet B and Tet M, detected in Pasteurella haemolytica and Pasteurella multocida from bovine herds. J. Antimicrob. Chemother. 36, 815–819.PubMedCrossRefGoogle Scholar
  97. 97.
    Brown, J. T. and Roberts, M. C. (1987) Cloning and characterization of tetM from a Ureaplasma urealyticum strain. Antimicrob. Agents Chemother. 31, 1852–1854.PubMedGoogle Scholar
  98. 98.
    Sougakoff, W., Papadopoulou, B., Nordmann, P., and Courvalin, P. (1987) Nucleotide sequence and distribution of gene tetO encoding tetracycline resistance in Campylobacter coli. FEMS Microbiol. Lett. 44, 153–159.CrossRefGoogle Scholar
  99. 99.
    Ng, L-K., Stiles, M. E., and Taylor, D. E. (1987) DNA probes for identification of tetracycline resistance genes in Campylobacter species isolated from swine and cattle. Antimicrob. Agents Chemother. 31, 1669–1674.Google Scholar
  100. 100.
    Shoemaker, N. B., Barber, R. D., and Salyers, A. A. (1989) Cloning and characterization of a Bacteroides conjugal tetracycline-erythromycin resistance element by using a shuttle cosmid vector J. Bacteriol. 171, 1294–1302.PubMedGoogle Scholar
  101. 101.
    Charpentier, E., Gerbaud, G., and Courvalin, P. (1993) Characterization of a new class of tetracycline-resistance gene tet(S) in Listeria monocytogenes BM4210. Gene 131, 27–34.PubMedCrossRefGoogle Scholar
  102. 102.
    Clermont, D., Chesneaum O., De Cespedes, G., and Horaud, T. (1997) New tetracycline resistance determinants coding for ribosomal protection in streptococci and nucleotide sequence of tet(T) isolated from Streptococcus pyogenes A498. Antimicrob. Agents Chemother. 41, 112–116.PubMedGoogle Scholar
  103. 103.
    Luo, Z-Q. and Farrand, S. K. (1999) Cloning and characterization of a tetracycline resistance determinant present in Agrobacterium tumefaciens C58. J. Bacteriol. 181, 618–626.PubMedGoogle Scholar
  104. 104.
    Roe, D. E., Weinberg, A., and Roberts, M. C. (1996) Mobile rRNA methylase genes in Actinobacillus actinomycetemcomitans. J. Antimicrob. Chemother. 37, 457–464.PubMedCrossRefGoogle Scholar
  105. 105.
    Gryczan, T., Grandi, G., Hanh, J., and Dubnau, D. (1980) DNA sequence and regulation of ermD, a macrolide-lincosamide-streptogramin B resistance element from Bacillus licheniformis. Mol. Gen. Genet. 194, 349–356.CrossRefGoogle Scholar
  106. 106.
    Rasmussen, J. L., Odelson, D. A., and Macrina, F. L. (1986) Complete nucleotide sequence and transcription of ermF, a macrolide-lincosamide-streptogramin B resistance determinant from Bacteroides fragilis. J. Bacteriol. 168, 523–533.PubMedGoogle Scholar
  107. 107.
    Xue, L., Zhao, L., Liu, H. W., and Sherman, D. H. (1998) A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: Architecture of metabolic diversity. Proc. Natl. Acad. Sci. USA 95, 12,111–12,116.Google Scholar
  108. 108.
    Liu, M., Kirpekar, F., van Wezel, G. P., and Douthwaite, S. (2000) The tylosin resistance gene tlrB of Streptomyces fradiae encodes a methyltransferase that targets G748 in 23S rRNA. Mol. Microbiol. 37, 811–820.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  1. 1.Department of Pathobiology, Box 357238, School of Public Health and Community MedicineUniversity of WashingtonSeattle

Personalised recommendations