Molecular Biotechnology

, Volume 20, Issue 3, pp 231–237 | Cite as

Magnetite-alginate beads for purification of some starch degrading enzymes



Starch degrading enzymes, viz., β-amylase, glucoamylase, and pullulanase, were purified using magnetite-alginate beads. In each case, the enzyme activity was eluted by using 1.0 M maltose. β-Amylase (sweet potato), glucoamylase (Aspergillus niger), and pullulanase (Bacillus acidopullulyticus) from their crude preparations were purified 37-, 31-, and 49-fold with 86, 87, and 95% activity recovery, respectively.

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed single band in each case.

Index Entries

Affinity separation β-amylase glucoamylase pullulanase magnetite-alginate beads Aspergillus niger Bacillus acidopullulyticus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Worlock, A. J., Sidgwick, A., Horsburgh, T., and Bell, P. R. L. (1991) The use of paramagnetic beads for the detection of major histocompatibility complex class I & Class II antigens. Biotechniques 10, 310–315.PubMedGoogle Scholar
  2. 2.
    Karlsson, G. B. and Platt, F. M. (1991) Analysis and isolation of human transferrin receptor using the OKT-9 monoclonal antibody covalently crosslinked to magnetic beads. Anal. Biochem. 199, 219–222.PubMedCrossRefGoogle Scholar
  3. 3.
    Raghavarao, K. S., Dueser, M., and Todd, P. (2000) Multistage magnetic and electrophoretic extraction of cells, particles and macromolecules. Adv. Biochem. Eng. Biotechnol. 68, 139–190.PubMedGoogle Scholar
  4. 4.
    Safarik, I. and Safarikova, M. (1999) The use of magnetic techniques for the isolation of cells. J. Chromatogr. B. 722, 33–53.CrossRefGoogle Scholar
  5. 5.
    Safarik, I. and Safarikova, M. (1997) Overview of magnetic separations used in biochemical and biotechnological applications, in Scientific and Clinical Applications of Magnetic Carriers (Hafeli, U., Schut, W., Teller, J., and Dorowski, M., eds.), Plenum Press, New York, pp. 323–340.Google Scholar
  6. 6.
    Tyagi, R. and Gupta, M.N. (1995) Purification and immobilization of Aspergillus niger on magnetic latex beads. Biocatal. Biotrans. 12, 293–298.Google Scholar
  7. 7.
    Teotia, S. and Gupta, M. N. (2001) Purification of α-amylases using magnetic alginate beads. Appl. Biochem. Biotechnol. 90, 211–220.PubMedCrossRefGoogle Scholar
  8. 8.
    Teotia, S., Khare, S. K., and Gupta, M. N. (2001) An efficient purification process for sweet potato beta-amylase by affinity precipitation with alginate. Enzyme Microb. Technol. 28, 792–795.CrossRefGoogle Scholar
  9. 9.
    Sharma, S., Sharma, A., and Gupta, M. N. (2000) One step purification of peanut phospholipase D by precipitation with alginate. Bioseparation 9, 93–98.PubMedCrossRefGoogle Scholar
  10. 10.
    Smidsrod, O. and Skjak-Braek, G. (1990) Alginate as immobilization matrix for cells. Trends Biotechnol. 8, 71–78.PubMedCrossRefGoogle Scholar
  11. 11.
    Burns, M. A., Kvesitadze, G. I., and Graves, D. J. (1985) Dried calcium alginate/magnetite spheres: A new support for chromatographic separations and enzyme immobilization. Biotechnol. Bioeng. 27, 137–145.CrossRefGoogle Scholar
  12. 12.
    Bernfeld, P. (1955) Amylases α and β, in Methods in Enzymology, Vol. 1 (Colowick, S. P. and Kaplan, N., eds), Academic Press, New York, pp. 149–158.Google Scholar
  13. 13.
    Nelson, N. (1944) Photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153, 375–380.Google Scholar
  14. 14.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  15. 15.
    Hames, B. D. (1986) An Introduction to polyacrylamide gel electrophoresis, in Gel Electrophoresis of Protein; A Practical Approach, (Hames, B. D. and Rickwood, D. eds), IRL Press, Oxford, pp. 1–86.Google Scholar
  16. 16.
    Cudney, R. and McPherson (1993) A Preliminary crystallographic analysis of sweet potato β-amylase. J. Mol. Biol. 229, 253–254.PubMedCrossRefGoogle Scholar
  17. 17.
    Manjunath, P. and Raghavendra Roa, M. R. (1979) Comparative studies on glucoamylases from three sources. J. Biosci. 1, 409–425.Google Scholar
  18. 18.
    Vihinen, M. and Mantsala, P. (1989) Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol. 24, 329–418.PubMedGoogle Scholar
  19. 19.
    Crab, W. D., Mitchinson, C. (1997) Enzymes involved in the processing of starch to sugars. Trends Biotechnol. 15, 349–352.CrossRefGoogle Scholar
  20. 20.
    Janse, B. J., Pretorius, I. S. (1995) One-step hydrolysis of starch using a recombinant strain of Saccharomyces cerevisiae producing alpha-amylase, gluco-amylase and pullulanase. Appl. Microbiol. Biotechnol. 42(6), 878–883.PubMedCrossRefGoogle Scholar
  21. 21.
    Patil, V. B., Patil, N. B. (2000) Biomass conversion: Synergistic use of α-amylase and amyloglucosidase for rapid and maximum conversion of starch into glucose. Ind. J. Chem. Technol. 7, 47–50.Google Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  1. 1.Chemistry DepartmentIndian Institute of Technology, Hauz KhasNew DelhiIndia

Personalised recommendations