Molecular Biotechnology

, Volume 20, Issue 1, pp 107–118 | Cite as

“De novo” sequencing of peptides recovered from in-gel digested proteins by nanoelectrospray tandem mass spectrometry

  • Andrej Shevchenko
  • Igor Chernushevich
  • Anna Shevchenko
  • Matthias Wilm
  • Matthias Mann
Protocol

Abstract

Proteins separated by one-dimensional or two-dimensional gel electrophoresis can be digested in-gel with trypsin and the recovered peptides can be sequenced de novo using triple quadrupole or hybrid quadrupole time-of-flight instruments equipped with a nanoelectrospray ion source. The peptide sequences determined provide useful information for identification of proteins by homology searching for cloning of the cognate genes by PCR based approaches.

Index Entries

Proteomics nanoelectrospray mass spectrometry tandem mass spectrometry protein sequencing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pandey, A. and Mann, M. (2000) Proteomics to study genes and genomes. Nature 405, 837–846.PubMedCrossRefGoogle Scholar
  2. 2.
    Chalmers, M. J. and Gaskell, S. J. (2000) Advances in mass spectrometry for proteome analysis. Curr. Opin. Biotechnol. 11, 384–390.PubMedCrossRefGoogle Scholar
  3. 3.
    Lahm, H. W. and Langen, H. (2000) Mass spectrometry: a tool for the identification of proteins separated by gels. Electrophoresis 21, 2105–2114.PubMedCrossRefGoogle Scholar
  4. 4.
    Jensen, O. N., Podtelejnikov, A. V., and Mann, M. (1997) Identification of the components of simple protein mixtures by high-accuracy peptide mass mapping and database searching. Anal. Chem. 69, 4741–4750.PubMedCrossRefGoogle Scholar
  5. 5.
    Berndt, P., Hobohm, U., and Langen, H. (1999) Reliable automatic protein identification from matrixassisted laser desorption/ionization mass spectrometric peptide fingerprints. Electrophoresis 20, 3521–3526.PubMedCrossRefGoogle Scholar
  6. 6.
    Wilm, M., Shevchenko, A., Houthaeve, T., et al. (1996) Femtomole sequencing of proteins from polyacrylamide gels by nanoelectrospray mass spectrometry. Nature 379, 466–469.PubMedCrossRefGoogle Scholar
  7. 7.
    Zachariae, W., Shevchenko, A., Andrews, P.D., et al. (1998) Mass spectrometric analysis of the anaphasepromoting complex from yeast: identification of a subunit related to cullins. Science 279, 1216–1219.PubMedCrossRefGoogle Scholar
  8. 8.
    Neubauer, G., King, A., Rappsilber, J., et al. (1998) Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat. Genetic 20, 46–50.CrossRefGoogle Scholar
  9. 9.
    Mann, M. and Wilm, M. (1994) Error tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 66, 4390–4399.PubMedCrossRefGoogle Scholar
  10. 10.
    Shevchenko, A., Sunyaev, S., Loboda, A., Shevchenko, A., Bork, P., Ens, W., Standing, K.G., (2001) Charting the proteomes of organisms with unsequenced genomes by MALDI quadropole time-of-flight mass spectometry and BLAST homology searching. Anal. Chem. 73, 1917–1926PubMedCrossRefGoogle Scholar
  11. 11.
    Loboda, A. V., Krutchinsky, A. N., Bromirski, M., Ens, W., and Standing, K. G. (2000) A tandem quadrupole/time-of-flight mass spectrometer with a matrix-assisted laser desorption/ionization source: design and performance. Rapid Commun. Mass. Spectrom. 14, 1047–1057.PubMedCrossRefGoogle Scholar
  12. 12.
    Shevchenko, A., Loboda, A., Shevchenko, A., Ens, W., and Standing, K. G. (2000) MALDI Quadrupole Time-of-Flight mass spectrometry: a powerful tool for proteomic research. Anal. Chem. 72, 2132–2141.PubMedCrossRefGoogle Scholar
  13. 13.
    Roepstorff, P. and Fohlman, J. (1984) Proposed nomenclature for sequence ions. Biomed. Mass Spectrom. 11, 601.Google Scholar
  14. 14.
    Shevchenko, A., Wilm, M., and Mann, M. (1997) Peptide sequencing by mass spectrometry for homology searches and cloning of genes. J. Protein Chem. 16, 481–490.PubMedCrossRefGoogle Scholar
  15. 15.
    Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., et al. (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827.PubMedCrossRefGoogle Scholar
  16. 16.
    McNagny, K. M., Petterson, I., Rossi, F., et al. (1997) Thrombomucin, a novel cell surface protein that defines thrombocytes and multipotent hematopoetic progenitors. J. Cell Biol. 138, 1395–1407.PubMedCrossRefGoogle Scholar
  17. 17.
    Morris, H. R., Paxton, T., Dell, A., et al. (1996) High sensitivity collisionally-activated decomposition tandem mass spectrometry on a novel quadrupole/orthogonal-acceleration time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 10, 889–896.PubMedCrossRefGoogle Scholar
  18. 18.
    Shevchenko, A., Chernushevich, I., Ens, W., et al. (1997) Rapid ‘De Novo’ peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 11, 1015–1024.PubMedCrossRefGoogle Scholar
  19. 19.
    Wilm, M., Neubauer, G., L., T., Shevchenko, A., and Bachi, A. (1999) De novo sequencing of proteins with mass spectrometry using the differential scanning technique, in Proteome and protein analysis (Kamp, R. M., Kyriakidis, D., and Choli-Papadopoulou, T., eds.), Springer, Berlin, Heidelberg, New York, pp. 65–79.Google Scholar
  20. 20.
    Shevchenko, A., Jensen, O. N., Wilm, M., and Mann, M. (1996) Sample preparation techniques for femtomole sequencing of proteins from polyacrylamide gels, in Proceedings of the 44th ASMS Conference on Mass Spectrometry and Allied Topics, Portland OR, p. 331.Google Scholar
  21. 21.
    Wilm, M., Neubauer, G., and Mann, M. (1996) Parent ion scans of unseparated peptide mixtures. Anal. Chem. 68, 527–533.PubMedCrossRefGoogle Scholar
  22. 22.
    Wilm, M. and Mann, M. (1996) Analytical properties of the nano electrospray ion source. Anal. Chem. 66, 1–8.CrossRefGoogle Scholar
  23. 23.
    Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858.PubMedCrossRefGoogle Scholar
  24. 24.
    Fernandez-Patron, C., Calero, M., Collazo, P. R., et al. (1995) Protein reverse staining: high-efficiency microanalysis of unmodified proteins detected on electrophoresis gels. Anal. Biochem. 224, pp. 203–211.PubMedCrossRefGoogle Scholar
  25. 25.
    Rabilloud, T. (1990) Mechanism of protein silver staining in polyacrylamide gels: A 10-year synthesis. Electrophoresis 11, 785–794.PubMedCrossRefGoogle Scholar
  26. 26.
    Thiede, B., Lamer, S., Mattow, J., et al. (2000) Analysis of missed cleavage sites, tryptophan oxidation and N-terminal pyroglutamylation after in-gel tryptic digestion. Rapid. Commun. Mass Spectrom. 14, 496–502.PubMedCrossRefGoogle Scholar
  27. 27.
    Andersen, J. S., Küster, B., Podtelejnikov, A., Mortz, E., and Mann, M. (1999) Common peptide contaminants observed by nanoelectrospray MS in low level sequencing of gel-separated proteins, in Proceedings of the 47th ASMS Conference on Mass Spectrometry and Allied Topics, Dallas TX, pp. 405,406.Google Scholar
  28. 28.
    Fenyo, D. (2000) Identifying the proteome: software tools. Curr. Opin. Biotechnol. 11, 391–395.PubMedCrossRefGoogle Scholar
  29. 29.
    Chernushevich, I. V. (2000) Duty cycle improvement for a QqTOF mass spectrometer and its use for precursor ion scans. Eur. J. Mass Spectrom., in press.Google Scholar
  30. 30.
    Shevchenko, A., Chernushevich, I., and Mann, M. (1998) High sensitivity analysis of gel separated proteins by a quadrupole-TOF tandem mass spectrometer, in Proceedings of the 46th ASMS Conference on Mass Spectrometry and Allied Topics, Orlando, FL, p. 237.Google Scholar
  31. 31.
    Lingner, J., Hughes, T. R., Shevchenko, A., Mann, M., Lundblad, V., and Cech, T. R. (1997) Reverse transcriptase motifs in the catalytic subunits of telomerase. Science 276, 561–567.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  • Andrej Shevchenko
    • 1
  • Igor Chernushevich
  • Anna Shevchenko
  • Matthias Wilm
  • Matthias Mann
  1. 1.Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany

Personalised recommendations