Molecular Biotechnology

, Volume 18, Issue 3, pp 193–198

A simple method for the purification of an antimicrobial peptide in recombinant Escherichia coli

  • Sung-Wook Hwang
  • Jae-Hyun Lee
  • Heung-Bok Park
  • Sang-Hyun Pyo
  • Jin-Eon So
  • Hyun-Soo Lee
  • Seung-Suh Hong
  • Jin-Hyun Kim
Research

Abstract

A magainin derivative, designated MSI-344, was produced in Escherichia coli as fusion protein, by utilizing a truncated amidophsphoribosyltransferase of E. coli as a fusion partner. Bacterial cells transformed with the gene encoding the fusion protein were grown to a high cell density and induced with isopropyl-1-thio-b-D-galatoside (IPTG) to initiate product expression. The fusion protein was accumulated into cytoplasmic inclusion body and recombinant MSI-344 was released from the fusion partner by hydroxylamine treatment. Following cleavage of the fusion protein with hydroxylamine, the released MSI-344 was purified to homogeneity by cationic exchange chromatography. The final purity was at least 95% by reversed-phase high performance liquid chromatography (RP-HPLC). Purified recombinant MSI-344 was found to be indistinguishable from the synthetic peptide determined by amino acid sequences and antimicrobial activity assay.

Index Entries

Antimicrobial peptide magainin derivative fusion protein purification hydroxylamine treatment chromatography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fuchs, P.C., Barry, A.L., and Brown, S.D. (1998) In vitro antimicrobial activity of MSI-78, a magainin analog. Antimicrob. Agents Chemother. 42, 1213–1216.PubMedGoogle Scholar
  2. 2.
    Hancock, R. E. W. (1997) Peptide antibiotics. Lancet 349, 418–422.PubMedCrossRefGoogle Scholar
  3. 3.
    Zasloff, M. (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA 84, 5449–5453.PubMedCrossRefGoogle Scholar
  4. 4.
    Bowman, H. G., and Hultmark, D. (1987) Cell-free immunity in insects. Annu. Rev. Microbiol. 41, 103–126.CrossRefGoogle Scholar
  5. 5.
    Ganz, T., Selsted, M. E., and Lehrer, R. I. (1990) Defensins. Eur. J. Haematol. 44, 1–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Habermann, E. (1972) Bee and wasp venoms. Science 177, 314–322.PubMedCrossRefGoogle Scholar
  7. 7.
    Takahashi, H., Komano, H., Kawagushi, N., Obinata, M., and Nawri, S. (1984) Activation of secretion of specific proteins from the fat body following injury to the body wall of Sarcophaga peregrina larvae. Insect. Biochem. 14, 713–717.CrossRefGoogle Scholar
  8. 8.
    Yarus, S., Rosen, J. M., Cole, A. M., Diamond, G. (1996) Production of active bovine tracheal antimicrobial peptide in milk of transgenic mice. Proc. Natl. Acad. Sci. USA 93, 14,118–14,121.CrossRefGoogle Scholar
  9. 9.
    Anderson, D., Engsrom, A., Josephson, S., Hansson, L., and Steiner, H. (1991) Biologically active and amidated cecropin produced in a baculovirus expression system from a fusion construct containing the antibody-binding part of protein A. Biochem. J. 280, 219–224.Google Scholar
  10. 10.
    Hellers, M., Gunne, H., Steiner, H. (1991) Expression and post-translational processing of preprocecropin A using a baculovirus vector. Eur. J. Biochem. 199, 435–439.PubMedCrossRefGoogle Scholar
  11. 11.
    Reichart, J. M., Petit, I., Legrain, M., et al. (1992) Expression and secretion in yeast of active insect defensin, an inducible antibacterial peptide from the fleshlfy Phormia terranovae. Invertebr. Rerod. Dev. 21, 15–24.Google Scholar
  12. 12.
    Hara, S., Yamakawa, M. (1996) Production in Escherichia coli of moricin, a novel type antibacterial peptide from the silkworm Bobvx mori. Biochem. Biophys. Res. Commun. 220, 664–669.PubMedCrossRefGoogle Scholar
  13. 13.
    Haught, C., Davis, G. D., Subramanian, R., Jackson, K. W., Harrison, R. G. (1998) Recombinant production and purification of novel antisense antimicrobial peptide in Escherichia coli. Biotechnol. Bioeng. 57, 55–61.PubMedCrossRefGoogle Scholar
  14. 14.
    Lee, J. H., Minn, I., Park, C. B., and Kim, S. C. (1998) Acidic peptide-mediated expression of the antimicrobial peptide buforin II as tandem repeats in Escherichia coli. Protein Expr. Purif. 12, 53–60.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang, L., Falla, T., Wu, M., et al. (1998) Determinants of recombinant production of antimicrobial cationic peptides and creation of peptide variants in bacteria. Biochem. Biophys. Res. Commun. 247, 674–680.PubMedCrossRefGoogle Scholar
  16. 16.
    Datar, R. V., Cartwright, T., and Rosen, C. G. (1993) Process economics of animal cell and bacterial fermentations: A case study analysis of tissue plasminogen activator. Biotechnology 11, 349–357.PubMedCrossRefGoogle Scholar
  17. 17.
    Maloy, W. L., and Kari, U. P. (1997) Structure-activity studies on magainins and other host defense peptides. Biopolymers 37, 105–122.CrossRefGoogle Scholar
  18. 18.
    Friedrich, C., Scott, M. G., Karunaratne, N., Yan, H., and Hancock, R. E. W. (1999) Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrob. Agents. Chemother. 43, 1542–1548.PubMedGoogle Scholar
  19. 19.
    Tso, J. Y., Hermodson, M. A., Zalkin, H. (1982) Glutamine phosphoribosylpyro- phosphate amidotransferase from cloned Escherichia coli purF. NH2-terminal amino acid sequence, identification of the glutamine site, and trace metal analysis. J. Biol. Chem. 257, 3532–3536.PubMedGoogle Scholar
  20. 20.
    Borstein, P. and Balian, G. (1977) Cleavage at Asn-Gly bonds with hydroxylamine. Methods Enzymol. 67, 132–145.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Sung-Wook Hwang
  • Jae-Hyun Lee
  • Heung-Bok Park
  • Sang-Hyun Pyo
  • Jin-Eon So
  • Hyun-Soo Lee
  • Seung-Suh Hong
  • Jin-Hyun Kim
    • 1
  1. 1.Department of Chemical EngineeringKongju National UniversityChungnamSouth Korea

Personalised recommendations