Molecular Biotechnology

, Volume 16, Issue 2, pp 151–160 | Cite as

Overview of vector design for mammalian gene expression

  • Randal J. Kaufman


The expression of cloned genes in mammalian cells is a basic tool for understanding gene expression, protein structure, and function, and biological regulatory mechanisms. The level of protein expression from heterologous genes introduced into mammlaian cells depends upon multiple factors including DNA copy number, efficiency of transportation, mRNA processing, mRNA transport, mRNA stability, and translational efficiency, and protein processing, transport, and stability. Different genes exhibit different rate limiting steps for efficient expression. Multiple strategies are available to obtain high level expression in mammalian cells. This article reviews vector design for expression of foreign genes in mammalian cells.

Index Entries

DNA transfection eukaryotic expression vectors gene induction DNA transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Keown, W. A., Campbell, C. R., and Kucherlapati, R. S. (1990) Methods for introducing DNA into mammalian cells, in Methods in Enzymology 185: Gene Expression Technology (Goeddel, D., ed.), Academic, San Diego, CA, pp. 527–537.Google Scholar
  2. 2.
    Potter, H., Weir, L., and Leder, P. (1984) Enhancer-dependent expression of human g-immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc. Natl. Acad. Sci. USA 81, 7161–7165.PubMedCrossRefGoogle Scholar
  3. 3.
    Davies, M. V. and Kaufman, R. J. (1992) Internal translation initiation in the design of improved expression vectors. Curr. Opin. Biotech. 3, 512–517.PubMedCrossRefGoogle Scholar
  4. 4.
    Kaufman, R. J. (1994) Control of gene expression at the level of translation intiation. Curr. Opin. Biotech. 5, 550–557.PubMedCrossRefGoogle Scholar
  5. 5.
    Kaufman, R. J. (1990) Selection and coamplification of heterologous genes in mammalian cells, in Methods in Enzymology 185: Gene Expression Technology (Goeddel, D., ed.), Academic, San Diego, CA, pp. 537–566.Google Scholar
  6. 6.
    Kaufman, R. J., and Murtha, P. (1987) Translational control mediated by eucaryotic initiation factor 2 is restricted to specific mRNAs in transfected cells. Mol. Cell. Biol. 7, 1568–1571.PubMedGoogle Scholar
  7. 7.
    Davies, M. V., Chang, H.-W., Jacobs, B. L., and Kaufman, R. J. (1993) The E3L and K3L vaccinia virus gene products stimulate translation through inhibition of the double-stranded RNA-dependent protein kinase by different mechanisms. J. Virol. 67, 1688–1692.PubMedGoogle Scholar
  8. 8.
    Pines, J. (1995) GFP in mammalian cells. Trends Genet. 11, 326–327.PubMedCrossRefGoogle Scholar
  9. 9.
    Schweinfest, C. W., Jorcyk, C. L., Fujiwara, S., and Papas, T. S. (1988) A heat shock-inducible eukaryotic expression vector. Gene 71, 207–210.PubMedCrossRefGoogle Scholar
  10. 10.
    Israel, D. I. and Kaufman, R. J. (1989) Highly inducible expression from vectors containing multiple GRE’s in CHO cells overexpressing the glucocorticoid receptor. Nucleic Acids Res. 17, 4589–4604.PubMedCrossRefGoogle Scholar
  11. 11.
    Ko, M. S. H., Sugiyama, N., and Takano, T. (1989) An auto-inducible vector conferring high glucocorticoid inducibility upon stable transformant cells. Gene 84, 383–389.PubMedCrossRefGoogle Scholar
  12. 12.
    Mulherkar, R. and Coulier, F. (1991) Overexpression of human Trk proto-oncogene in mouse cells using an inducible vector system. Biochem. Biophys. Res. Commun. 177, 90–96.PubMedCrossRefGoogle Scholar
  13. 13.
    Totzke, F., Marme, D., and Hug, H. (1992) Inducible expression of human phospholipase C-g2 and its activation by platelet-derived growth factor A-chain homodimer in transfected NIH3T3 fibroblasts. Eur. J. Biochem. 203, 633–639.PubMedCrossRefGoogle Scholar
  14. 14.
    Daniels-McQueen, S., Goessling, L. S., and Thach, R. E. (1992) Inducible expression bovine papillomavirus shuttle vectors containing ferritin transitional regulatory elements. Gene 122, 271–279.PubMedCrossRefGoogle Scholar
  15. 15.
    Baim, S. B., Labow, M. A., Levine, A. J., and Shenk, T. (1991) A chimeric mammalian transactivator based on the lac repressor that is regulated by temperature and isopropyl-b-d-thiogalactopyranoside. Proc. Natl. Acad. Sci. 88, 5072–5076.PubMedCrossRefGoogle Scholar
  16. 16.
    Gossen, M., and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracyline-responsive promoters. Proc. Natl. Acad. Sci. 89, 5547–5551.PubMedCrossRefGoogle Scholar
  17. 17.
    Gossen, M., Bonin, A., Freundlieb, S., and Bujard, H. (1994) Inducible gene expression systems for higher eukaryotic cells. Curr. Opin. Biotech. 5, 516–520.PubMedCrossRefGoogle Scholar
  18. 18.
    Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769.PubMedCrossRefGoogle Scholar
  19. 19.
    Urlaub, G., and Chasin, L. A. (1980) Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc. Natl. Acad. Sci. USA 77, 4216–4220.PubMedCrossRefGoogle Scholar
  20. 20.
    McBratney, S., Chen, C. Y., and Sarnow, P. (1993) Internal Initiation of Translation. Curr. Opin. Cell Biol. 5, 961–965.PubMedCrossRefGoogle Scholar
  21. 21.
    Muzyczka, N., ed. (1992) Current Topics in Microbiology and Immunology: Eukaryotic Viral Expression Vectors, Springer-Verlag Press, NY.Google Scholar
  22. 22.
    Moss, B. (1991) Vaccinia virus: a tool for research and vaccine development. Science 262, 1662–1667.CrossRefGoogle Scholar
  23. 23.
    Earl, P. L. and Moss, B. (1991) Characterization of recombinant vaccinia viruses and their products, in Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.), Wiley, New York, pp. 16.18.1–16.18.10.Google Scholar
  24. 24.
    Earl, P. L. and Moss, B. (1991) Generation of recombinant vaccinia viruses, in Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.), Wiley, New York, pp. 16.17.1–16.17.16.Google Scholar
  25. 25.
    Earl, P. L., Cooper, N., and Moss, B. (1991) Preparation of cell cultures and vaccinia virus stocks, in Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.), Wiley, New York, pp. 16.16.1–16.16.7.Google Scholar
  26. 26.
    Elroy-Stein, O., Fuerst, T. R., and Moss, B. (1989) Cap-independent translation of mRNA conferred by encephalomycarditis virus 5′ sequence improves the performance of the vaccinia virus/bacteriophage T7 hybrid expression system. Proc. Natl. Acad. Sci. USA 86, 6126–6130.PubMedCrossRefGoogle Scholar
  27. 27.
    Fuerst, T. R., Earl, P. L., and Moss, B. (1987) Use of hybrid vaccinia virus-T7 RNA polymerase system for expression of target genes. Mol. Cell Biol. 7, 2538–2544.PubMedGoogle Scholar
  28. 28.
    Moss, B. (1992) Vaccinia and other poxvirus expression vectors. Curr. Opin. Biotech. 3, 518–522.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  • Randal J. Kaufman
    • 1
  1. 1.Department of Biological Chemistry, Howard Hughes Medical InstituteUniversity of Michigan Medical CenterAnn Arbor

Personalised recommendations