Molecular Biotechnology

, Volume 16, Issue 2, pp 127–149 | Cite as

Principles and practices of laser scanning confocal microscopy



The laser scanning confocal microscope (LSCM) is an essential tool for many biomedical imaging applications at the level of the light microscope. The basic principles of confocal microscopy and the evolution of the LSCM into today’s sophisticated instruments are outlined. The major imaging modes of the LSCM are introduced including single optical sections, multiple wavelength images, three-dimensional reconstructions, and living cell and tissue sequences. Practical aspects of specimen preparation, image collection, and image presentation are included along with a primer on troubleshooting the LSCM for the novice.


Confocal microscopy laser scanning fluorescence light microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paddock, S. W. (1999) Confocal laser scanning microscopy. BioTechniques 27, 992–1004.PubMedGoogle Scholar
  2. 2.
    Pawley, J. B (1995) Handbook of Biological Confocal Microscopy, 2nd ed., Plenum, New York.Google Scholar
  3. 3.
    Chen, H., Hughes, D. D., Chan, T. A., Sedat, J. W., and Agard, D. A. (1996) IVE (Image Visualization Environment): a software platform for all three-dimensional microscopy applications. J. Struct. Biol. 116, 56–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Potter, S. M. (1996) Vital imaging: two photons are better than one. Curr. Biol. 6, 1595–1598.PubMedCrossRefGoogle Scholar
  5. 5.
    Minsky, M. (1988) Memoir on inventing the confocal scanning microscope. Scanning 10, 128–138.Google Scholar
  6. 6.
    Inoue, S. and Spring, K. S. (1997) Video Microscopy: The Fundamentals, 2nd ed. Plenum, New York.Google Scholar
  7. 7.
    DeRisi, J., Penland, L., Brown, P. O., Bittner, M. L., Meltzer, P. S., Ray, M. et al. (1996) Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nature Genetics 14, 457–460.PubMedCrossRefGoogle Scholar
  8. 8.
    White, J. G., Amos, W. B., Durbin, R., and Fordham, M. (1990) Development of a confocal imaging system for biological epifluorescence application, in Optical Microscopy For Biology, Wiley-Liss, New York, pp. 1–18.Google Scholar
  9. 9.
    White, J. G., Amos, W. B., and Fordham, M. (1987) An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J. Cell Biol. 105, 41–48.PubMedCrossRefGoogle Scholar
  10. 10.
    Pawley, J. B. (1995) Light paths of current commercial confocal microscopes for biology, in Handbook of Biological Confocal Microscopy, 2nd ed. (Pawley J. B., ed.) Plenum, New York, pp. 581–598.Google Scholar
  11. 11.
    Terasaki, M. and Dailey, M. E. (1995) Confocal microscopy of living cells, in Handbook of Biological Confocal Microscopy, 2nd ed. (Pawley J. B., ed.), Plenum, New York, pp. 327–346.Google Scholar
  12. 12.
    Cheng, H., Lederer, W. J., and Cannell, M. B. (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740–744.PubMedCrossRefGoogle Scholar
  13. 13.
    White, N. S. (1995) Visualization systems for multidimensional CLSM, in Handbook of Biological Confocal Microscopy, 2nd ed. (Pawley J.B., ed.) Plenum, New York, pp. 211–254.Google Scholar
  14. 14.
    Stricker, S. A., Centonze, V. E., Paddock, S. W., and Schatten, G. (1992) Confocal microscopy of fertilization-induced calcium dynamics in sea urchin eggs. Dev. Biol. 149, 370–380.PubMedCrossRefGoogle Scholar
  15. 15.
    Paddock, S. W., Hazen, E. J., and De Vries, P. J. (1997) Methods and applications of three color confocal imaging. BioTechniques 22, 120–126.PubMedGoogle Scholar
  16. 16.
    Thomas, C. F., DeVries, P., Hardin, J., and White, J. G. (1996) Four dimensional imaging: computer visualization of 3D movements in living specimens. Science 273, 603–607.PubMedCrossRefGoogle Scholar
  17. 17.
    Mohler, W. A. and White, J. G. (1998) Stereo-4-D reconstruction and animation from living fluorescent specimens. Biotechniques 24, 1006–1012.PubMedGoogle Scholar
  18. 18.
    Paddock, S. W., Mahoney, S., Minshall, M., Smith, L. C., Duvic, M., and Lewis, D. (1991) Improved detection of in situ hybridization by laser scanning confocal microscopy. BioTechniques 11, 486–494.PubMedGoogle Scholar
  19. 19.
    Serbedzija, G. N., Bronner-Fraser, M., and Fraser, S. (1992) Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development 116, 297–307.PubMedGoogle Scholar
  20. 20.
    Deerinck, T. J., Martone, M. E., Lev-Ram, V., Green, D. P. L., Tsien R. Y., Spector, D. L., et al. (1994) Fluorescence photooxidation with eosin: a method for high resolution immunolocalisation and in situ hybridization detection for light and electron microscopy. J. Cell Biol. 126, 901–910.PubMedCrossRefGoogle Scholar
  21. 21.
    Paddock, S. W. and Cooke, P. (1988) Correlated confocal laser scanning microscopy with high-voltage electron microscopy of focal contacts in 3T3 cells stained with Napthol Blue Black. EMSA Abs 46, 100–101.Google Scholar
  22. 22.
    Sheppard, C. J. R. and Shotten, D. M. (1997) Confocal laser scanning microscopy. Royal Microscopical Society Handbook Series #38, Bios scientific publishers, Oxford, UK.Google Scholar
  23. 23.
    Matsumoto, B. (2000) Cell Biological Applications of Confocal Microscopy, 2nd ed. Methods In Cell Biology, Academic Press, San Diego, CA, in press.Google Scholar
  24. 24.
    Paddock, S. W. (1998) Protocols In Confocal Microscopy. Methods In Mol. Biol. 122. (J. Walker, ed.) Humana, Totowa, NJ.Google Scholar
  25. 25.
    Spector, D. L., Goldman, R., and Leinwand, L. (1998) Cells: A Laboratory Manual, vol. II Light Microscopy and Cell Structure. Cold Spring Harbor Press, Cold Spring Harbor, NY.Google Scholar
  26. 26.
    Cullander, C. (1994) Imaging in the far-red with electronic light microscopy: requirements and limitations. J. Microsc. 176, 281–286.PubMedGoogle Scholar
  27. 27.
    Keller, H. A. (1995) Objective lenses for confocal microscopy, in Handbook of Biological Confocal Microscopy, 2nd ed. (Pawley, J. B., ed.), Plenum, New York, pp. 111–126.Google Scholar
  28. 28.
    Wilson, T. (1995) The role of the pinhole in confocal imaging system, in Handbook of Biological Confocal Microscopy, 2nd ed. (Pawley, J. B., ed.), Plenum, New York, pp. 167–182.Google Scholar
  29. 29.
    Haugland, R. P. (1999) Handbook of Fluorescent Probes and Research Chemicals. 7th ed. Molecular Probes Inc., Eugene, Oregon. ( Scholar
  30. 30.
    Wilkie, G. S. and Davis, I. (1998) High resolution and sensitive mRNA in situ hybridization using fluorescent tyramide amplification. Tech Tips Online t01458 ( Scholar
  31. 31.
    Bliton, C., Lechleiter, J., and Clapham, D. E. (1993) Optical modifications enabling simultaneous confocal imaging with dyes excited by ultra-violet and visible-wavelength light. J. Microsc. 169, 15–26.Google Scholar
  32. 32.
    Chalfie, M. and Kain, S. (1998) Green Fluorescent Protein: Properties, Applications and Protocols. Wiley-Liss, New York.Google Scholar
  33. 33.
    Sullivan, K. F. and Kay, S. A. (1998) Green fluorescent proteins. Meth. Cell Biol. Vol. 58. Academic, San Diego, CA.Google Scholar
  34. 34.
    Karten, H. J. (1998) Information management of confocal microscopy images. Meth. Mol. Biol. 122, 403–420.Google Scholar
  35. 35.
    Brelje, T. C., Wessendorf, M. W., and Sorenson, R. L. 1993. Multicolor laser scanning confocal immunofluorescence microscopy: practical applications and limitations. Meth. Cell Biol. 38, 98–177.Google Scholar
  36. 36.
    Brown, N. L. (1998) Imaging gene expression using antibody probes. Meth. Mol. Biol. 122, 75–91.Google Scholar
  37. 37.
    Sharma, D. (1999) The use of an AOTF to achieve high quality simultaneous multiple label imaging. BioRad Tech. Note 04. Scholar
  38. 38.
    Halder, G. and Paddock, S. W. (1998) Presentation of confocal images. Meth. Mol. Biol. 122, 373–384.Google Scholar
  39. 39.
    Bornfleth, H., Edelmann, P., Zink, D., Cremer, T., and Cremer, C. (1999) Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophys. J. 77, 2871–2886.PubMedGoogle Scholar
  40. 40.
    Centonze, V. E. and White, J. G. (1998) Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys. J. 75, 2015–2024.PubMedGoogle Scholar
  41. 41.
    Fan, G. Y., Fujisaki, H., Miyawaki, A., Tsay, R.-K., Tsien R. Y., and Ellisman, M. H. (1999) Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophys. J. 76, 2412–2420.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  1. 1.Department of Molecular BiologyUniversity of WisconsinMadisonUSA

Personalised recommendations