Molecular Biotechnology

, Volume 13, Issue 3, pp 191–200 | Cite as

Mycobacteria: Bugs and bugbears (Two steps forward and one step back)

Review

Abstract

The use of molecular techniques to study the mycobacteria has advanced greatly since the first genomic libraries of Mycobacterium tuberculosis and M. leprae were constructed in 1985. However, there are still pitfalls for the unwary. Most of the problems associated with the use of molecular techniques to study mycobacteria can be related to one of the following problems: slow growth rate causing problems with contamination; the formation of macroscopic clumps when grown in culture; resistance to standard chemical lysis procedures; the requirement for containment facilities for pathogenic species; the lack of suitable genetic vectors; and the problems of spontaneous antibiotic resistance. Despite these problems, considerable progress has been made and standard techniques have been developed for the preparation of protein, nucleic acids (DNA and RNA) and cell wall components, chemical and transposon mutagenesis and gene replacement methods, the use of reporter genes and expression vectors, and improved detection and drug sensitivity testing.

Index Entries

Mycobacterium tuberculosis Mycobacterium smegmatis mycobacteria molecular biology mycobacteriophages plasmids mutagenesis transposons recombination expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clark-Curtiss, J. E. (1990). Genome structure of mycobacteria, in Molecular Biology of the Mycobacteria (McFadden, J. J.) Academic Press Ltd, London, pp. 77–96.Google Scholar
  2. 2.
    Clark-Curtiss, J. E., Jacobs, W. R., Docherty, M. A., Ritchie, L. R., and Curtiss III R. (1985). Molecular analysis of DNA and construction of genomic libraries of Mycobacterium leprae. J. Bacteriol. 161, 1093–1102.PubMedGoogle Scholar
  3. 3.
    Thole, J. E. R., Dauwerse, H. G., Das, P. K., Groothius, D. G., Schouls, L. M., and van Embden, J. D. A. (1985). Cloning of Mycobacterium bovis BCG DNA and expression of antigens in Escherichia coli. Inf. Immun. 50, 800–806.Google Scholar
  4. 4.
    Young, R. A., Mehra, V., Sweetser, D., Buchanan, T., Clark-Curtiss, J., Davis, R. W., and Bloom, B. R. (1985). Genes for the major protein antigens of the leprosy parasite Mycobacterium leprae. Nature 316, 450–452.PubMedCrossRefGoogle Scholar
  5. 5.
    Young, R. A., Bloom, B. R., Grosskinsky, C. M., Ivanyi, J., Thomas, D., and Davis, R. W. (1985). Dissection of Mycobacterium tuberculosis antigens using recombinant DNA. Proc. Natl. Acad. Sci. USA 82, 2583–2587.PubMedCrossRefGoogle Scholar
  6. 6.
    Jacobs, W. R., Docherty, M. A., Curtiss III R., and Clark-Curtiss, J. E. (1986). Expression of Mycobacterium leprae genes from a Streptococcus mutans promoter in Esherichia coli K12. Proc. Natl. Acad. Sci. USA 83, 1926–1930.PubMedCrossRefGoogle Scholar
  7. 7.
    Snapper, S. B., Melton, R. E., Mustafa, S., Kieser, T., and Jacobs, W. R. (1990). Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Molec. Microbiol. 4, 1911–1919.CrossRefGoogle Scholar
  8. 8.
    Houssaini-Iraqui, M., Clavel-Seres, S., Rastogi, N., and David, H. L. (1992). The expression of the Mycobacterium aurum carotenogenesis operon is not repressed by the repressor of Mycobacterium vaccae photoinducible carotenogenesis. FEMS Microbiol. Lett. 99, 233–236.CrossRefGoogle Scholar
  9. 9.
    Garbe, T. R., Barathi, J., Barnini, S., Zhang, Y., Abouzeid, C., Tang, D., Mukherjee, R., and Young, D. B. (1994). Transformation of mycobacterial species using hygromycin resistance as selectable marker. Microbiol. 140, 133–138.Google Scholar
  10. 10.
    Rauzier, J., Moniz-Pereira, J., and Gicquel-Sanzey, B. (1988). Complete nucleotide sequence of pAL5000, a plasmid from Mycobacterium fortuitum. Gene 71, 315–321.PubMedCrossRefGoogle Scholar
  11. 11.
    Hermans, J., Martin, C., Huijberts, G. N. M., Goosen, T., and Debont, J. A. M. (1991). Transformation of Mycobacterium aurum and Mycobacterium smegmatis with the broad host-range gram-negative cosmid vector pJRD215. Molec. Microbiol. 5, 1561–1566.CrossRefGoogle Scholar
  12. 12.
    Dellagostin, O. A., Wall, S., Norman, E., O’Shaughnessy, T., Dale, J. W., and McFadden, J. (1993). Construction and use of integrative vectors to express foreign genes in mycobacteria. Molec. Microbiol. 10, 983–993.CrossRefGoogle Scholar
  13. 13.
    Stover, C. K., Delacruz, V. F., Fuerst, T. R., Burlein, J. E., Benson, L. A., Bennett, L. T., Bansal, G. P., Young, J. F., Lee, M. H., Hatfull, G. F., Snapper, S. B., Barletta, R. G., Jacobs, W. R., and Bloom, B. R. (1991). New use of BCG for recombinant vaccines. Nature 351, 456–460.PubMedCrossRefGoogle Scholar
  14. 14.
    Radford, A. J. and Hodgson, A. L. M. (1991). Construction and characterization of a Mycobacterium-Escherichia coli shuttle vector. Plasmid 25, 149–153.PubMedCrossRefGoogle Scholar
  15. 15.
    Qin, M., Taniguchi, H. and Mizuguchi, Y. (1994). Analysis of the replication region of a mycobacterial plasmid, pMSC262. J. Bacteriol. 176, 419–425.PubMedGoogle Scholar
  16. 16.
    Beggs, M. L., Crawford, J. T., and Eisenach, K. D. (1995). Isolation and sequencing of the replication region of Mycobacterium avium plasmid pLR7. J. Bacteriol. 177, 4836–4840.PubMedGoogle Scholar
  17. 17.
    Ribeiro, G., Viveiros, M., David, H. L., and Costa, J. V. (1997). Mycobacteriophage D29 contains an integration system similar to that of the temperate mycobacteriophage L5. Microbiol. 143, 2701–2708.Google Scholar
  18. 18.
    Seoane, A., Navas, J., and Lobo, J. M. G. (1997). Targets for pSAM2 integrase-mediated site-specific integration in the Mycobacterium smegmatis chromosome. Microbiol. 143, 3375–3380.Google Scholar
  19. 19.
    Gavigan, J. A., Ainsa, J. A., Perez, E., Otal, I., and Martin, C. (1997). Isolation by genetic labeling of a new mycobacterial plasmid, pJAZ38, from Mycobacterium fortuitum. J. Bacteriol. 179, 4115–4122.PubMedGoogle Scholar
  20. 20.
    Gavigan, J. A., Guilhot, C., Gicquel, B., and Martin, C. (1995). Use of conjugative and thermosensitive cloning vectors for transposon delivery to Mycobacterium smegmatis. FEMS Microbiol. Lett. 127, 35–39.PubMedCrossRefGoogle Scholar
  21. 21.
    Bardarov, S., Kriakov, J., Carriere, C., Yu, S. W., Vaamonde, C., McAdam, R. A., Bloom, B. R., Hatfull, G. F., and Jacobs, W. R. (1997). Conditionally replicating mycobacteriophages: A system for transposon delivery to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94, 10961–10966.PubMedCrossRefGoogle Scholar
  22. 22.
    Hinds, J., Mahenthiralingam, E., Kempsell, K. E., Duncan, K., Stokes, R. W., Parish, T., and Stoker, N. G. (1999). Enhanced gene replacement in mycobacteria. Microbiol. 145, 519–527.Google Scholar
  23. 23.
    Berthet, F. X., Lagranderie, M., Gounon, P., LaurentWinter, C., Ensergueix, D., Chavarot, P., Thouron, F., Maranghi, E., Pelicic, V., Portnoi, D., Marchal, G., and Gicquel, B. (1998). Attenuation of virulence by disruption of the Mycobacterium tuberculosis erp gene. Science 282, 759–762.PubMedCrossRefGoogle Scholar
  24. 24.
    Pelicic, V., Reyrat, J. M., and Gicquel, B. (1996). Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable suicide vectors. Molec. Microbiol. 20, 919–925.CrossRefGoogle Scholar
  25. 25.
    Aldovini, A., Husson, R. N., and Young, R. A. (1993). The uraA locus and homologous recombination in Mycobacterium bovis BCG. J. Bacteriol. 175, 7282–7289.PubMedGoogle Scholar
  26. 26.
    Azad, A. K., Sirakova, T. D., Rogers, L. M., and Kolattukudy, P. E. (1996). Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides. Proc. Natl. Acad. Sci. USA 93, 4787–4792.PubMedCrossRefGoogle Scholar
  27. 27.
    Balasubramanian, V., Pavelka, M. S., Bardarov, S., Martin, J., Weisbrod, T., McAdam, R. A., Bloom, B., and Jacobs, W. R. (1996). Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates. J. Bacteriol. 178, 273–279.PubMedGoogle Scholar
  28. 28.
    Marklund, B. I., Speert, D. P., and Stokes, R. W. (1995). Gene replacement through homologous recombination in Mycobacterium intracellulare. J. Bacteriol. 177, 6100–6105.PubMedGoogle Scholar
  29. 29.
    Marklund, B. I., Mahenthiralingam, E., and Stokes, R. W. (1998). Site-directed mutagenesis and virulence assessment of the katG gene of Mycobacterium intracellulare. Molec. Microbiol. 29, 999–1008.CrossRefGoogle Scholar
  30. 30.
    Norman, E., Dellagostin, O. A., Mcfadden, J., and Dale, J. W. (1995). Gene replacement by homologous recombination in Mycobacterium bovis BCG. Molec. Microbiol. 16, 755–760.CrossRefGoogle Scholar
  31. 31.
    Ramakrishnan, L., Tran, H. T., Federspiel, N. A., and Falkow, S. (1997). A crtB homolog essential for photochromogenicity in Mycobacterium marinum: Isolation, characterization, and gene disruption via homologous recombination. J. Bacteriol. 179, 5862–5868.PubMedGoogle Scholar
  32. 32.
    Reyrat, J. M., Berthet, F. X., and Gicquel, B. (1995). The urease locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette Guerin. Proc. Natl. Acad. Sci. USA 92, 8768–8772.PubMedCrossRefGoogle Scholar
  33. 33.
    Pelicic, V., Jackson, M., Reyrat, J. M., Jacobs, W. R., Gicquel, B., and Guilhot, C. (1997). Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94, 10955–10960.PubMedCrossRefGoogle Scholar
  34. 34.
    Prammananan, T., Sander, P., Springer, B., and Bottger, E. C. (1999). RecA-mediated gene conversion and aminoglycoside resistance in strains heterozygous for rRNA. Antimicrob. Ag. Chemother. 43, 447–453.CrossRefGoogle Scholar
  35. 35.
    Papavinasasundaram, K. G., Colston, M. J., and Davis, E. O. (1998). Construction and complementation of a recA deletion mutant of Mycobacterium smegmatis reveals that the intein in Mycobacterium tuberculosis recA does not affect RecA function. Molec. Microbiol. 30, 525–534.CrossRefGoogle Scholar
  36. 36.
    Bottger, E. C. (1994). Resistance to drugs targeting protein synthesis in mycobacteria. Trends in Microbiol. 2, 416–421.CrossRefGoogle Scholar
  37. 37.
    Belisle, J. T. and Sonnenberg, M. G. (1998). Isolation of genomic DNA from Mycobacteria, in Methods in Molecular Biology, vol 101: Mycobacteria Protocols (Parish, T. and Stoker, N. G. eds.) Humana Press, Totowa, NJ. 31–44.Google Scholar
  38. 38.
    Mangan, J. A., Sole, K. M., Mitchison, D. A., and Butcher, P. D. (1997). An effective method of RNA extraction from bacteria refractory to disruption, including mycobacteria. Nucl. Acids Res. 25, 675–676.PubMedCrossRefGoogle Scholar
  39. 39.
    Patel, B. K. R., Banerjee, D. K., and Butcher, P. D. (1991). Extraction and characterization of messenger RNA from mycobacteria implication for virulence gene identification. J. Microbiol. Meth. 13, 99–111.CrossRefGoogle Scholar
  40. 40.
    RiveraMarrero, C. A., Burroughs, M. A., Masse, R. A., Vannberg, F. O., Leimbach, D. L., Roman, J., and Murtagh, J. J. (1998). Identification of genes differentially expressed in Mycobacterium tuberculosis by differential display PCR. Microb. Pathogen. 25, 307–316.CrossRefGoogle Scholar
  41. 41.
    Alland, D., Kramnik, I., Weisbrod, T. R., Otsubo, L., Cerny, R., Miller, L. P., Jacobs, W. R., and Bloom, B. R. (1998). Identification of differentially expressed mRNA in prokaryotic organisms by customized amplification libraries (DECAL): The effect of isoniazid on gene expression in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 95, 13227–13232.PubMedCrossRefGoogle Scholar
  42. 42.
    Besra, G. S. (1998). Preparation of cell wall fractions from mycobacteria, in Methods in Molecular Biology, vol 101: Mycobacteria Protocols (Parish, T. and Stoker, N. G. eds.) Humana Press, Totowa, NJ, pp. 91–108.Google Scholar
  43. 43.
    Guilhot, C., Gicquel, B., and Martin, C. (1992). Temperature-sensitive mutants of the mycobacterium plasmid pAL5000. FEMS Microb. Lett. 98, 181–186.CrossRefGoogle Scholar
  44. 44.
    Stolt, P. and Stoker, N. G. (1996). Functional definition of regions necessary for replication and incompatibility in the Mycobacterium fortuitum plasmid pAL5000. Microbiol. 142, 2795–2802.Google Scholar
  45. 45.
    King, C. H., Plikaytis, B. B., and Shinnick, T. M. (1995). Isolation of plasmid DNA from mycobacteria using a resin-based alkaline lysis kit. Biotechniques 19, 362+328+330.Google Scholar
  46. 46.
    Stolt, P. and Stoker, N. G. (1997). Mutational analysis of the regulatory region of the mycobacterium plasmid pAL5000. Nucl. Acids Res. 25, 3840–3846.PubMedCrossRefGoogle Scholar
  47. 47.
    Haeseleer, F. (1994). Structural instability of recombinant plasmids in mycobacteria. Res.Microbiol. 145, 683–687.PubMedCrossRefGoogle Scholar
  48. 48.
    Kumar, D., Srivastava, B. S., and Srivastava, R. (1998). Genetic rearrangements leading to disruption of heterologous gene expression in mycobacteria: An observation with Escherichia coli beta-galactosidase in Mycobacterium smegmatis and its implication in vaccine development. Vaccine 16, 1212–1215.PubMedCrossRefGoogle Scholar
  49. 49.
    Dellagostin, O. A., Esposito, G., Eales, L. J., Dale, J. W., and Mcfadden, J. (1995). Activity of mycobacterial promoters during intracellular and extracellular growth. Microbiol. 141, 1785–1792.Google Scholar
  50. 50.
    Timm, J., Eng Mong Lim, and Gicquel, B. (1994). Escherichia coli-mycobacteria shuttle vectors for operon and gene fusions to lacZ: The pJEM series. J. Bacteriol. 176, 6749–6753.PubMedGoogle Scholar
  51. 51.
    Bannantine, J. P., Barletta, R. G., Thoen, C. O., and Andrews R., Jr. (1997). Identification of Mycobacterium paratuberculosis gene expression signals. Microbiol. 143, 921–928.CrossRefGoogle Scholar
  52. 52.
    Parish, T., Mahenthiralingam, E., Draper, P., Davis, E. O., and Colston, M. J. (1997). Regulation of the inducible acetamidase gene of Mycobacterium smegmatis. Microbiol. 143, 2267–2276.Google Scholar
  53. 53.
    Das Gupta, S. K., Bashyam, M. D., and Tyagi, A. K. (1993). Cloning and assessment of mycobacterial promoters by using a plasmid shuttle vector. J. Bacteriol. 175, 5186–5192.PubMedGoogle Scholar
  54. 54.
    Curcic, R., Dhandayuthapani, S., and Deretic, V. (1994). Gene expression in mycobacteria: transcriptional fusions based on xyIE and analysis of the promoter region of the response regulator mtrA from Mycobacterium tuberculosis. Molec. Microbiol. 13, 1057–1064.CrossRefGoogle Scholar
  55. 55.
    Gordon, S., Parish, T., Roberts, I. S., and Andrew, P. W. (1994). The application of luciferase as a reporter of environmental regulation of gene expression in mycobacteria. Lett. App. Microbiol. 19, 336–340.Google Scholar
  56. 56.
    Andrew, P. W. and Roberts, I. S. (1993). Construction of a bioluminescent mycobacterium and its use for assay of antimycobacterial agents. J. Clin. Microbiol 31, 2251–2254.PubMedGoogle Scholar
  57. 57.
    Dhandayuthapani, S., Via, L. E., Thomas, C. A., Horowitz, P. M., Deretic, D., and Deretic, V. (1995). Green fluorescent protein as a marker for gene expression and cell biology of mycobacterial interactions with macrophages. Molec. Microbiol. 17, 901–912.CrossRefGoogle Scholar
  58. 58.
    Strohl, W. R. (1992). Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucl. Acids Res. 20, 961–974.PubMedCrossRefGoogle Scholar
  59. 59.
    Bashyam, M. D. and Tyagi, A. K. (1998). Identification and analysis of “extended-10” promoters from mycobacteria. J. Bacteriol. 180, 2568–2573.PubMedGoogle Scholar
  60. 60.
    Mulder, M. A., Zappe, H., and Steyn, L. M. (1997). Mycobacterial promoters. Tubercle and Lung Disease 78, 211–223.PubMedCrossRefGoogle Scholar
  61. 61.
    O’Gaora, P., Barnini, S., Hayward, C., Filley, E., Rook, G., Young, D., and Thole, J. (1997). Mycobacteria as immunogens: development of expression vectors for use in multiple mycobacterial species. Med. Principles Prac. 6. Google Scholar
  62. 62.
    Triccas, J. A., Parish, T., Britton, W. J., and Gicquel, B. (1998). An inducible expression system permitting the efficient purification of a recombinant antigen from Mycobacterium smegmatis. FEMS Microbiol. Lett. 167, 151–156.PubMedCrossRefGoogle Scholar
  63. 63.
    Hinshelwood, S. and Stoker, N. G. (1992). Cloning of mycobacterial histidine synthesis genes by complementation of a Mycobacterium smegmatis auxotroph. Molec. Microbiol. 6, 2887–2895.CrossRefGoogle Scholar
  64. 64.
    Holland, K. T. and Ratledge, C. (1971). A procedure for selecting and isolating specific auxotrophic mutants of Mycobacterium smegmatis. J. Gen. Microbiol. 66, 115–118.PubMedGoogle Scholar
  65. 65.
    Konickova-Radochova, M., Konicek, J., and Malek, I. (1970). The study of mutagenisis in Mycobacterium phlei. Folia Microbiologica 15, 88–102.PubMedCrossRefGoogle Scholar
  66. 66.
    Kundu, M., Basu, J., and Chakrabarti, P. (1991). Defective mycolic acid biosynthesis in a mutant of Mycobacterium sme gmatis. J. Gen. Microbiol. 137, 2197–2200.PubMedGoogle Scholar
  67. 67.
    Liu, J. and Nikaido, H. (1999). A mutant of Mycobacteriu smegmatis defective in the biosynthesis of mycolic acids accumulate meromycolates. Proc. Natl. Acad. Sci. USA 96, 4011–4016.PubMedCrossRefGoogle Scholar
  68. 68.
    Guilhot, C., Otal, I., Van Rompaey, I., Martin, C., and Gicquel, B. (1994). Efficient transposition in mycobacteria: Construction of Mycobacterium smegmatis insertional mutant libraries. J. Bacteriol. 176, 535–539.PubMedGoogle Scholar
  69. 69.
    McAdam, R. A., Weisbrod, T. R., Martin, J., Scuderi, J. D., Brown, A. M., Cirillo, J. D., Bloom, B. R., and Jacobs, W. R., Jr. (1995). In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. Inf. Immun. 63, 1004–1012.Google Scholar
  70. 70.
    Hatfull, G. F. (1996). The molecular genetics of Mycobacterium tuberculosis. Curr. Topics Microbiol. Immunol. 215, 29–47.Google Scholar
  71. 71.
    Sander, P., Meier, A., and Bottger, E. C. (1995). RpsL+: A dominant selectable marker for gene replacement in mycobacteria. Molec. Microbiol. 16, 991–1000.CrossRefGoogle Scholar
  72. 72.
    Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M. A., Rajandream, M. A., Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J. E., Taylor, K., Whitehead, S., and Barrell, B. G. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537.PubMedCrossRefGoogle Scholar
  73. 73.
    Lander, E. S. (1999). Array of hope. Nature Genetics 21, 3–4.PubMedCrossRefGoogle Scholar
  74. 74.
    Hawkey, P. M. (1994). The role of the polymerase chain reaction in the diagnosis of mycobacterial infections. Rev. Med. Microbiol. 5, 21–32.Google Scholar
  75. 75.
    Bottger, E. C. (1991). The polymerase chain reaction in the diagnosis of Mycobacteria. Deutsche Medizinische Wochenschrift. 116, 777–779.PubMedGoogle Scholar
  76. 76.
    Otal, I., Martin, C., Levy-Frebault, V., Thierry, D., and Gicquel, B. (1991). Restriction fragment length polymorphism analysis using IS6110 as an epidemiological marker in tuberculosis. J. Clin. Microbiol. 29, 1252–1254.PubMedGoogle Scholar
  77. 77.
    Kamerbeek, J., Schouls, L., Kolk, A., Van Agterveld, M., Van Soolingen, D., Kuijper, S., Bunschoten, A., Molhuizen, H., Shaw, R., Goyal, M., and Van Embden, J. (1997). Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 35, 907–914.PubMedGoogle Scholar
  78. 78.
    Rogall, T., Flohr, T., and Bottger, E. C. (1990). Differentiation of mycobacterial species by direct sequencing of amplified DNA. J. Gen. Microbiol. 136, 1915–1920.PubMedGoogle Scholar
  79. 79.
    Hayashi, K. (1991). PCR-SSCP: a rapid and sensitive method for detection of mutations in the genomic DNA. PCR Meth. Appl. USA 1, 34–38.Google Scholar
  80. 80.
    Shim, T. S., Yoo, C. G., Han, S. K., Shim, Y. S., and Kim, Y. W. (1996). Rapid detection of rifampicinresistant M. tuberculosis by PCR- SSCP of rpoB gene. Tuberculosis Resp. Dis. 43, 842–851.Google Scholar
  81. 81.
    Wilson, S. M., AlSuwaidi, Z., McNerney, R., Porter, J., and Drobniewski, F. (1997). Evaluation of a new rapid bacteriophage-based method for the drug susceptibility testing of Mycobacterium tuberculosis. Nature Medicine 3, 465–468.PubMedCrossRefGoogle Scholar
  82. 82.
    Carriere, C., Riska, P. F., Zimhony, O., Kriakov, J., Bardarov, S., Burns, J., Chan, J., and Jacobs, W. R. (1997). Conditionally replicating luciferase reporter phages: Improved sensitivity for rapid detection and assessment of drug susceptibility of Mycobacterium tuberculosis. J. Clin. Microbiol. 35, 3232–3239.PubMedGoogle Scholar
  83. 83.
    Parish, T., Gordhan, B. G., McAdam, R. A., Mizrahi, V., and Stoker, N. G. (1999). Production of mutants in amino acid biosynthesis genes of Mycobacterium tuberculosis by homologous recombination. Microbiol. 145, 3479–3503.Google Scholar
  84. 84.
    Wilson, M., DeRisi, J., Kristensen, H.-H., Imboden, P., Rane, S., Brown, P. O., and Schoolnik, G. K. (1999). Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl. Acad. Sci. USA 96, 12833–12838.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1999

Authors and Affiliations

  1. 1.Department of Infectious and Tropical DiseasesLondon School of Hygiene & Tropical MedicineLondonUK

Personalised recommendations