Journal of Molecular Neuroscience

, Volume 29, Issue 3, pp 195–214 | Cite as

Prions

Protein only or something more? Overview of potential prion cofactors
Original Article

Abstract

Transmissible spongiform encephalopathies (TSEs) in humans and animals are attributed to protein-only infectious agents, called prions. Prions have been proposed to arise from the conformational conversion of the cellular protein PrPC into a misfolded form (e.g., PrPSc for scrapie), which precipitates into aggregates and fibrils. It has been proposed that the conversion process is triggered by the interaction of the infectious form (PrPSc) with the cellular form (PrPC) or might result from a mutation in the gene for PrPC. However, until recently, all efforts to reproduce this process in vitro had failed, suggesting that host factors are necessary for prion replication. In this review we discuss recent findings such as the cellular factors that might be involved in the conformational conversion of prion proteins and the potential mechanisms by which they could operate.

Index Entries

PrPC PrPSc prion conversion transconformation cofactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adjou K. T., Simoneau S., Sales N., Lamoury F., Dormont D., Papy-Garcia D., et al. (2003) A novel generation of heparan sulfate mimetics for the treatment of prion diseases. J. Gen. Virol. 84, 2595–2603.PubMedCrossRefGoogle Scholar
  2. Adler V., Zeiler B., Kryukov V., Kascsak R., Rubenstein R., and Grossman A. (2003) Small, highly structured RNAs participate in the conversion of human recombinant PrP(Sen) to PrP(Res) in vitro. J. Mol. Biol. 332, 47–57.PubMedCrossRefGoogle Scholar
  3. Aguzzi A. Heppner F. L., Heikenwalder M., Prinz M., Mertz K., Seeger H., and Glatzel M. (2003) Immune system and peripheral nerves in propagation of prions to CNS. Br. Med. Bull. 66, 141–159.PubMedCrossRefGoogle Scholar
  4. Alper T., Cramp W. A., Haig D. A., and Clarke M. C. (1967) Does the agent of scrapie replicate without nucleic acid? Nature 214, 764–766.PubMedCrossRefGoogle Scholar
  5. Arnold J. E., Tipler C., Laszlo L., Hope J., Landon M., and Mayer R. J. (1995) The abnormal isoform of the prion protein accumulates in late-endosome-like organelles in scrapie-infected mouse brain. J. Pathol. 176, 403–411.PubMedCrossRefGoogle Scholar
  6. Baker C. A. and Manuelidis L. (2003) Unique inflammatory RNA profiles of microglia in Creutzfeldt-Jakob disease. Proc. Natl. Acad. Sci. U. S. A. 100, 675–679.PubMedCrossRefGoogle Scholar
  7. Baker C. A., Lu Z. Y., Zaitsev I., and Manuelidis L. (1999) Microglial activation varies in different models of Creutzfeldt-Jakob disease. J. Virol. 73, 5089–5097.PubMedGoogle Scholar
  8. Baskakov I. V., Aagaard C., Mehlhorn I., Wille H., Groth D., Baldwin M. A., et al. (2000) Self-assembly of recombinant prion protein of 106 residues. Biochemistry 39, 2792–2804.PubMedCrossRefGoogle Scholar
  9. Baskakov I. V., Legname G., Prusiner S. B., and Cohen F. E. (2001) Folding of prion protein to its native alphahelical conformation is under kinetic control. J. Biol. Chem. 276, 19,687–19,690.CrossRefGoogle Scholar
  10. Basler K., Oesch B., Scott M., Westaway D., Walchli M., Groth D. F., et al. (1986) Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46, 417–428.PubMedCrossRefGoogle Scholar
  11. Bessen R. A. and Marsh R. F. (1992) Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J. Virol. 66, 2096–2101.PubMedGoogle Scholar
  12. Bian L., Yang J. D., Guo T. W., Sun Y., Duan S. W., et al. (2004) Insulin-degrading enzyme and Alzheimer disease: a genetic association study in the Han Chinese. Neurology 63, 241–245.PubMedGoogle Scholar
  13. Blatch G. L., Lassle M., Zetter B. R., and Kundra V. (1997) Isolation of a mouse cDNA encoding mSTI1, a stress-inducible protein containing the TPR motif. Gene 194, 277–282.PubMedCrossRefGoogle Scholar
  14. Bogdanov M. and Dowhan W. (1999) Lipid-assisted protein folding. J. Biol. Chem. 274, 36,827–36,830.Google Scholar
  15. Bolton D. C., McKinley M. P., and Prusiner S. B. (1982) Identification of a protein that purifies with the scrapie prion. Science 218, 1309–1311.PubMedCrossRefGoogle Scholar
  16. Booth S., Bowman C., Baumgartner R., Dolenko B., Sorensen G., Robertson C., et al. (2004a) Molecular classification of scrapie strains in mice using gene expression profiling. Biochem. Biophys. Res. Commun. 325, 1339–1345.PubMedCrossRefGoogle Scholar
  17. Booth S., Bowman C., Baumgartner R., Sorensen G., Robertson C., Coulthart M., et al. (2004b) Identification of central nervous system genes involved in the host response to the scrapie agent during preclinical and clinical infection. J. Gen. Virol. 85, 3459–3471.PubMedCrossRefGoogle Scholar
  18. Borchelt D. R., Taraboulos A., and Prusiner S. B. (1992) Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J. Biol. Chem. 267, 16,188–16,199.Google Scholar
  19. Bosque P. J. and Prusiner S. B. (2000) Cultured cell sublines highly susceptible to prion infection. J. Virol. 74, 4377–4386.PubMedCrossRefGoogle Scholar
  20. Brandner S., Isenmann S., Raeber A., Fischer M., Sailer A., Kobayashi Y., et al. (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343.PubMedCrossRefGoogle Scholar
  21. Bruce M. E. (1993) Scrapie strain variation and mutation. Br. Med. Bull. 49, 822–838.PubMedGoogle Scholar
  22. Bruce M. E. (2003) TSE strain variation. Br. Med. Bull. 66, 99–108.PubMedCrossRefGoogle Scholar
  23. Bruce M., Chree A., McConnell I., Foster J., Pearson G., and Fraser H. (1994) Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 343, 405–411.PubMedCrossRefGoogle Scholar
  24. Bruce M. E., Will R. G., Ironside J. W., McConnell I., Drummond D., Suttie A., et al. (1997) Transmissions to mice indicate that ‘new variant’ CJD, is caused by the BSE agent. Nature 389, 498–501.PubMedCrossRefGoogle Scholar
  25. Bueler H., Aguzzi A., Sailer A., Greiner R. A., Autenried P., Aguet M., and Weissmann C. (1993) Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347.PubMedCrossRefGoogle Scholar
  26. Campana V., Sarnataro D., and Zurzolo C. (2005) The highways and byways of prion protein trafficking. Trends Cell. Biol. 15, 102–111.PubMedCrossRefGoogle Scholar
  27. Campana V., Sarnataro D., Fasano C., Casanova P., Paladino S., and Zurzolo C. (2006) Detergent-resistant membrane domains but not the proteasome are involved in the misfolding of a PrP mutant retained in the endoplasmic reticulum. J. Cell Sci. 119, 433–442.PubMedCrossRefGoogle Scholar
  28. Castilla J., Gutierrez-Adan A., Brun A., Pintado B., Parra B., Ramirez M. A., et al. (2004) Different behavior toward bovine spongiform encephalopathy infection of bovine prionprotein transgenic mice with one extra repeat octapeptide insert mutation. J. Neurosci. 24, 2156–2164.PubMedCrossRefGoogle Scholar
  29. Castilla J., Saa P., Hetz C., and Soto C. (2005) In vitro generation of infectious scrapie prions. Cell 121, 195–206.PubMedCrossRefGoogle Scholar
  30. Chesebro B. (1998) BSE and prions: uncertainties about the agent. Science 279, 42,43.PubMedCrossRefGoogle Scholar
  31. Chesebro B. (2003) Introduction to the transmissible spongiform encephalopathies or prion diseases. Br. Med. Bull. 66, 1–20.PubMedCrossRefGoogle Scholar
  32. Chiarini L. B., Freitas A. R., Zanata S. M., Brentani R. R., Martins V. R., and Linden R. (2002) Cellular prion protein transduces neuroprotective signals. EMBO J. 21, 3317–3326.PubMedCrossRefGoogle Scholar
  33. Chiesa R., Piccardo P., Ghetti B., and Harris D. A. (1998) Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Neuron 21, 1339–1351.PubMedCrossRefGoogle Scholar
  34. Cohen F. E. and Prusiner S. B. (1998) Pathologic conformations of prion proteins. Annu. Rev. Biochem. 67, 793–819.PubMedCrossRefGoogle Scholar
  35. Collinge J. (2001) Prion disease of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24, 519–550.PubMedCrossRefGoogle Scholar
  36. Collinge J., Sidle K. C., Meads J., Ironside J., and Hill A. F. (1996) Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383, 685–690.PubMedCrossRefGoogle Scholar
  37. Come J. H., Fraser P. E., and Lansbury P. T., Jr. (1993) A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc. Natl. Acad. Sci. U. S. A. 90, 5959–5963.PubMedCrossRefGoogle Scholar
  38. Cordeiro Y., Machado F., Juliano L., Juliano M. A., Brentani R. R., Foguel D., and Silva J. L. (2001) DNA converts cellular prion protein into the beta-sheet conformation and inhibits prion peptide aggregation. J. Biol. Chem. 276, 49,400–49,409.CrossRefGoogle Scholar
  39. Dandoy-Dron F., Guillo F., Benboudjema L., Deslys J. P., Lasmezas C., Dormont D., et al. (1998) Gene expression in scrapie. Cloning of a new scrapie-responsive gene and the identification of increased levels of seven other mRNA transcripts. J. Biol. Chem. 273, 7691–7697.PubMedCrossRefGoogle Scholar
  40. Davis E. C., Broekelmann T. J., Ozawa Y., and Mecham R. P. (1998) Identification of tropoelastin as a ligand for the 65-kD FK506-binding protein, FKBP65, in the secretory pathway. J. Cell Biol. 140, 295–303.PubMedCrossRefGoogle Scholar
  41. DeArmond S. J., Sanchez H., Yehiely F., Qiu Y., Ninchak-Casey A., Daggett V., et al. (1997) Selective neuronal targeting in prion disease. Neuron 19, 1337–1348.PubMedCrossRefGoogle Scholar
  42. Deleault N. R., Lucassen R. W., and Supattapone S. (2003) RNA molecules stimulate prion protein conversion. Nature 425, 717–720.PubMedCrossRefGoogle Scholar
  43. Doh-Ura K., Iwaki T., and Caughey B. (2000) Lysosomotropic agents and cystenic protease inhibitors inhibit scrapie-associated prion protein accumulation. J. Virol. 74, 4894–4897.PubMedCrossRefGoogle Scholar
  44. Doh-Ura K., Perryman S., Race R., and Chesebro B. (1995) Identification of differentially expressed genes in scrapie-infected mouse neuroblastoma cells. Microb. Pathog. 18, 1–9.PubMedGoogle Scholar
  45. Edenhofer F., Rieger R., Famulok M., Wendler W., Weiss S., and Winnacker E. L. (1996) Prion protein PrPc interacts with molecular chaperones of the Hsp60 family. J. Virol. 70, 4724–4728.PubMedGoogle Scholar
  46. Ehehalt R., Keller P., Haass C., Thiele C., and Simons K. (2003) Amyloidogenic processing of the Alzheimer beta amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160, 113–123.PubMedCrossRefGoogle Scholar
  47. Ellis V., Daniels M., Misra R., and Brown D. R. (2002) Plasminogen activation is stimulated by prion protein and regulated in a copper-dependent manner. Biochemistry 41, 6891–6896.PubMedCrossRefGoogle Scholar
  48. Ely S., Bonatesta R., Ancsin J. B., Kindy M., and Kisilevsky R. (2001) The in-vitro influence of serum amyloid A isoforms on enzymes that regulate the balance between esterified and un-esterified cholesterol. Amyloid 8, 169–181.PubMedGoogle Scholar
  49. Enari M., Flechsig E., and Weissmann C. (2001) Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc. Natl. Acad. Sci. U. S. A. 98, 9295–9299.PubMedCrossRefGoogle Scholar
  50. Fischer M. B., Roeckl C., Parizek P., Schwarz H. P., and Aguzzi A. (2000) Binding of disease-associated prion protein to plasminogen. Nature 408, 479–483.PubMedCrossRefGoogle Scholar
  51. Gabizon R., McKinley M. P., Groth D., and Prusiner S. B. (1988) Immunoaffinity purification and neutralization of scrapie prion infectivity. Proc. Natl. Acad. Sci. U. S. A. 85, 6617–6621.PubMedCrossRefGoogle Scholar
  52. Gajdusek D. C. and Gibbs C. J. Jr. (1971) Transmission of two subacute spongiform encephalopathies of man (Kuru and Creutzfeldt-Jakob (disease) to new world monkeys. Nature 230, 588–591.PubMedCrossRefGoogle Scholar
  53. Gajdusek D. C., Gibbs C. J., and Alpers M. (1966) Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature 209, 794–796.PubMedCrossRefGoogle Scholar
  54. Gambetti P., Kong Q., Zou W., Parchi P., and Chen S. G. (2003) Sporadic and familial CJD: classification and characterisation. Br. Med. Bull. 66, 213–239.PubMedCrossRefGoogle Scholar
  55. Gauczynski S., Hundt C., Leucht C., and Weiss S. (2001a) Interaction of prion proteins with cell surface receptors, molecular chaperones, and other molecules. Adv. Protein Chem. 57, 229–272.PubMedGoogle Scholar
  56. Gauczynski S., Peyrin J. M., Haik S., Leucht C., Hundt C., Rieger R., et al. (2001b) The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J. 20, 5863–5875.PubMedCrossRefGoogle Scholar
  57. Graner E., Mercadante A. F., Zanata S. M., Forlenza O. V., Cabral A. L., Veiga S. S., et al. (2000a) Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res. Mol. Brain Res. 76, 85–92.PubMedCrossRefGoogle Scholar
  58. Graner E., Mercadante A. F., Zanata S. M., Martins V. R., Jay D. G., and Brentani R. R. (2000b) Laminin-induced PC-12 cell differentiation is inhibited following laser inactivation of cellular prion protein. FEBS Lett. 482, 257–260.PubMedCrossRefGoogle Scholar
  59. Greenwood A. D., Horsch M., Stengel A., Vorberg I., Lutzny G., Maas E., et al. (2005) Cell line dependent RNA expression profiles of prion-infected mouse neuronal cells. J. Mol. Biol. 349, 487–500.PubMedCrossRefGoogle Scholar
  60. Griffith J. S. (1967) Self-replication and scrapie. Nature 215, 1043–1044.PubMedCrossRefGoogle Scholar
  61. Harper J. D. and Lansbury P. T. Jr. (1997) Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407.PubMedCrossRefGoogle Scholar
  62. Harris D. A. (2003) Trafficking, turnover and membrane topology of PrP. Br. Med. Bull. 66, 71–85.PubMedCrossRefGoogle Scholar
  63. Heppner F. L., Christ A. D., Klein M. A., Prinz M., Fried M., Kraehenbuhl J. P., and Aguzzi A. (2001) Transepithelial prion transport by M cells. Nat. Med. 7, 976–977.PubMedCrossRefGoogle Scholar
  64. Hill A. F. and Collinge J. (2001) Strain variations and species barriers. Contrib. Microbiol. 7, 48–57.PubMedGoogle Scholar
  65. Hill A. F., Desbruslais M., Joiner S., Sidle K. C., Gowland I., Collinge J., et al. (1997) The same prion strain causes vCJD and BSE. Nature 389, 448–450.PubMedCrossRefGoogle Scholar
  66. Hope J. (1994) The nature of the scrapie agent: the evolution of the virino. Ann. N. Y. Acad. Sci. 724, 282–289.PubMedCrossRefGoogle Scholar
  67. Horiuchi M. and Caughey B. (1999) Specific binding of normal prion protein to the scrapie form via a localized domain initiates its conversion to the protease-resistant state. EMBO J. 18, 3193–3203.PubMedCrossRefGoogle Scholar
  68. Horiuchi M., Baron G. S., Xiong L. W., and Caughey B. (2001) Inhibition of interactions and interconversions of prion protein isoforms by peptide fragments from the C-terminal folded domain. J. Biol. Chem. 276, 15,489–15,497.CrossRefGoogle Scholar
  69. Hornemann S. and Glockshuber R. (1998) A scrapie-like unfolding intermediate of the prion protein domain PrP(121–231) induced by acidic pH. Proc. Natl. Acad. Sci. U. S. A. 95, 6010–6014.PubMedCrossRefGoogle Scholar
  70. Hundt C., Peyrin J. M., Haik S., Gauczynski S., Leucht C., Rieger R., et al. (2001) Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J. 20, 5876–5886.PubMedCrossRefGoogle Scholar
  71. Hunter N., Goldmann W., Benson G., Foster J. D., and Hope J. (1993) Swaledale sheep affected by natural scrapie differ significantly in PrP genotype frequencies from healthy sheep and those selected for reduced incidence of scrapie. J. Gen. Virol. 74, 1025–1031.PubMedGoogle Scholar
  72. Ironside J. W. (2003) The spectrum of safety: variant Creutzfeldt-Jakob disease in the United Kingdom. Semin. Hematol. 40, 16–22.PubMedCrossRefGoogle Scholar
  73. Jackson G. S., Hill A. F., Joseph C., Hosszu L., Power A., Waltho J. P., et al. (1999a) Multiple folding pathways for heterologously expressed human prion protein. Biochim. Biophys. Acta 1431, 1–13.PubMedGoogle Scholar
  74. Jackson G. S., Hosszu L. L., Power A., Hill A. F., Kenney J., Saibil H., et al. (1999b) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283, 1935–1937.PubMedCrossRefGoogle Scholar
  75. Jansen K., Schafer O., Birkmann E., Post K., Serban H., Prusiner S. B., and Riesner D. (2001) Structural intermediates in the putative pathway from the cellular prion protein to the pathogenic form. Biol. Chem. 382, 683–691.PubMedCrossRefGoogle Scholar
  76. Jarrett J. T. and Lansbury P. T. Jr. (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058.PubMedCrossRefGoogle Scholar
  77. Jin T., Gu Y., Zanusso G., Sy M., Kumar A., Cohen M., Gambetti P., and Singh N. (2000) The chaperone protein BiPbinds to a mutant prion protein and mediates its degradation by the proteasome. J. Biol. Chem. 275, 38,699–38,704.Google Scholar
  78. Kazlauskaite J. and Pinheiro T. J. (2005) Aggregation and fibrillization of prions in lipid membranes. Biochem. Soc. Symp. 72, 211–222.PubMedGoogle Scholar
  79. Kazlauskaite J., Sanghera N., Sylvester I., Venien-Bryan C., and Pinheiro T. J. (2003) Structural changes of the prion protein in lipid membranes leading to aggregation and fibrillization. Biochemistry 42, 3295–3304.PubMedCrossRefGoogle Scholar
  80. Kempster S., Collins M. E., Aronow B. J., Simmons M., Green R. B., and Edington N. (2004) Clusterin shortens the incubation and alters the histopathology of bovine spongiform encephalopathy in mice. Neuroreport 15, 1735–1738.PubMedCrossRefGoogle Scholar
  81. Kimberlin R. H., Cole S., and Walker C. A. (1987) Temporary and permanent modifications to a single strain of mouse scrapie on transmission to rats and hamsters. J. Gen. Virol. 68, 1875–1881.PubMedGoogle Scholar
  82. Kocisko D. A., Come J. H., Priola S. A., Chesebro B., Raymond G. J., Lansbury P. T., and Caughey B. (1994) Cell-free formation of protease-resistant prion protein. Nature 370, 471–474.PubMedCrossRefGoogle Scholar
  83. Kopacek J., Sagaguchi S., Shigematsu K., et al. (2000) Upregulation of the genes encoding lysosomal hydrolases, a peferin-like protein, and peroxidases in the brains of mice affected with an experimental prion disease. J. Virol. 74, 411–417.PubMedGoogle Scholar
  84. Kurschner C. and Morgan J. I. (1995) The cellular prion protein (PrP) selectively binds to Bcl-2 in the yeast two-hybrid system. Brain Res. Mol. Brain Res. 30, 165–168.PubMedCrossRefGoogle Scholar
  85. Lasmezas C. I., Comoy E., Hawkins S., Herzog C., Mouthon F., Konold T., et al. (2005) Risk of oral infection with bovine spongiform encephalopathy agent in primates. Lancet 365, 781–783.PubMedGoogle Scholar
  86. Lasmezas C. I., Deslys J. P., Demaimay R., Adjou K. T., Lamoury F., Dormont D., et al. (1996) BSE transmission to macaques. Nature 381, 743–744.PubMedCrossRefGoogle Scholar
  87. Lassle M., Blatch G. L., Kundra V., Takatori T., and Zetter B. R. (1997) Stress-inducible, murine protein mSTI1. Characterization of binding domains for heat shock proteins and in vitro phosphorylation by different kinases. J. Biol. Chem. 272, 1876–1884.PubMedCrossRefGoogle Scholar
  88. Lee S. and Eisenberg D. (2003) Seeded conversion of recombinant prion protein to a disulfide-bonded oligomer by a reduction-oxidation process. Nat. Struct. Biol. 10, 725–730.PubMedCrossRefGoogle Scholar
  89. Lee K. S., Linden R., Prado M. A., Brentani R. R., and Martins V. R. (2003) Towards cellular receptors for prions. Rev. Med. Virol. 13, 399–408.PubMedCrossRefGoogle Scholar
  90. Legname G., Baskakov I. V., Nguyen H. O., Riesner D., Cohen F. E., DeArmond S. J., and Prusiner S. B. (2004) Synthetic mammalian prions. Science 305, 673–676.PubMedCrossRefGoogle Scholar
  91. Lehmann S. and Harris D. A. (1996) Two mutant prion proteins expressed in cultured cells acquire biochemical properties reminiscent of the scrapie isoform. Proc. Natl. Acad. Sci. U. S. A. 93, 5610–5614.PubMedCrossRefGoogle Scholar
  92. Maissen M., Roeckl C., Clatzel M., Goldmann W., and Aguzzi A. (2001) Plasminogen binds to disease-associated prion protein of multiple species. Lancet 357, 2026–2028.PubMedCrossRefGoogle Scholar
  93. May B. C., Govaerts C., Prusiner S. B., and Cohen F. E. (2004) Prons: so many fibers, so little infectivity. Trends Biochem. Sci. 29, 162–165.PubMedCrossRefGoogle Scholar
  94. Mestel R. (1996) Putting prions to the test. Science 273, 184–189.PubMedCrossRefGoogle Scholar
  95. Miller M. W., Williams E. S., Hobbs N. T., and Wolfe L. L. (2004) Environmental source of prion transmission in mule deer. Emerg. Infect. Dis. 10, 1003–1006.PubMedGoogle Scholar
  96. Montrasio F., Cozzio A., Flechsig E., Rossi D., Klein M. A., Rulicke T., et al. (2001) Blymphocyte-restricted expression of prion protein does not enable prion replication in prion protein knockout mice. Proc. Natl. Acad. Sci. U. S. A. 98, 4034–4037.PubMedCrossRefGoogle Scholar
  97. Morillas M., Swietnicki W., Gambetti P., and Surewicz W. K. (1999) Membrane environment alters the conformational structure of the recombinant human prion protein. J. Biol. Chem. 274, 36,859–36,865.CrossRefGoogle Scholar
  98. Morillas M., Vanik D. L., and Surewicz W. K. (2001) On the mechanism of alpha-helix to beta-sheet transition in the recombinant prion protein. Biochemistry 40, 6982–6987.PubMedCrossRefGoogle Scholar
  99. Myerowitz R., Lawson D., Mizukami H., Mi Y., Tifft C. J., and Proia R. L. (2002) Molecular pathophysiology in Tay-Sachs and Sandh off diseases as revealed by gene expression profiling. Hum. Mol. Genet. 11, 1343–1350.PubMedCrossRefGoogle Scholar
  100. Nakanishi H. (2003) Neuronal and microglial cathepsins in aging andage-related diseases. Ageing Res. Rev. 2, 367–381.PubMedCrossRefGoogle Scholar
  101. Nandi P. K., Leclerc E., Nicole J. C., and Takahashi M. (2002) DNA-induced partial unfolding of prion protein leads to its polymerisation to amyloid. J. Mol. Biol. 322, 153–161.PubMedCrossRefGoogle Scholar
  102. Nishida N., Harris D. A., Vilette D., Laude H., Frobert Y., Grassi J., et al. (2000) Successful transmission of three mouse-adapted scrapie strains to murine neuroblas-tome cell lines overexpressing wild-type mouse prion protein. J. Virol. 74, 320–325.PubMedCrossRefGoogle Scholar
  103. Oesch B., Teplow D. B., Stahl N., Serban D., Hood L. E., and Prusiner S. B. (1990) Identification of cellular proteins binding to the scrapie prion protein. Biochemistry 29, 5848–5855.PubMedCrossRefGoogle Scholar
  104. Orgel L. E. (1996) Prion replication and secondary nucleation. Chem. Biol. 3, 413–414.PubMedCrossRefGoogle Scholar
  105. Pan K. M., Baldwin M., Nguyen J., Gasset M., Serban A., Groth D., et al. (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. U. S. A. 90, 10,962–10,966.Google Scholar
  106. Pan T., Wong B. S., Liu T., Li R., Petersen R. B., and Sy M. S. (2002) Cell-surface prion protein interacts with glycosaminoglycans. Biochem. J. 368, 81–90.PubMedCrossRefGoogle Scholar
  107. Peretz D., Williamson R. A., Kaneko K., Vergara J., Leclerc E., Schmitt-Ulms G., et al. (2001) Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412, 739–743.PubMedCrossRefGoogle Scholar
  108. Perrier V., Kaneko K., Safar J., Vergara J., Tremblay P., DeArmond S. J., et al. (2002) Dominant-negative inhibition of prion replication in transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 99, 13,079–13,084.CrossRefGoogle Scholar
  109. Petit-Turcotte C., Stohl S. M., Beffert U., Cohn J. S., Aumont N., Tremblay M., et al. (2001) Apolipoprotein C-Iexpression in the brain in Alzheimer's disease. Neurobiol. Dis. 8, 953–963.PubMedCrossRefGoogle Scholar
  110. Post K., Pitschke M., Schafer O., Wille H., Appel T. R., Kirsch D., et al. (1998) Rapid, acquisition of beta-sheet structure in the prion protein prior to multimer formation. Biol. Chem. 379, 1307–1317PubMedCrossRefGoogle Scholar
  111. Priola S. A. and Caughey B. (1994) Inhibition of scrapie-associated PrP accumulation. Probing the role of glyco-saminoglycans in amyloidogenesis. Mol. Neurobiol. 8, 113–120.PubMedGoogle Scholar
  112. Priola S. A. and Chesebro B. (1995) A single hamster PrP amino acid blocks conversion to protease-resistant PrP in scrapie-infected mouse neuroblastoma cells. J. Virol. 69, 7754–7758.PubMedGoogle Scholar
  113. Prusiner S. B. (1991) Molecular biology of prion diseases. Science 252, 1515–1522PubMedCrossRefGoogle Scholar
  114. Prusiner S. B. (1982) Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144.PubMedCrossRefGoogle Scholar
  115. Prusiner S. B. (1998) Prions. Proc. Natl. Acad. Sci. U. S. A. 95, 13,363–13,383.CrossRefGoogle Scholar
  116. Prusiner S. B., Scott M., Foster D., Pan K. M., Groth D., Mirenda C., et al. (1990) Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63, 673–686.PubMedCrossRefGoogle Scholar
  117. Race R. E., Fadness L. H., and Chesebro B. (1987) Characterization of scrapie infection in mouse neuroblastoma cells. J. Gen. Virol. 68, 1391–1399.PubMedGoogle Scholar
  118. Rieger R., Edenhofer F., Lasmezas C. I., and Weiss S. (1997) The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat. Med. 3, 1383–1388.PubMedCrossRefGoogle Scholar
  119. Riemer C., Neidholds S., Burwinkel M., Schwarz A., Schultz J., Kratzschmar J., et al. (2004) Gene expression profiling of scrapie-infected brain tissue. Biochem. Biophys. Res. Commun. 323, 556–564.PubMedCrossRefGoogle Scholar
  120. Riesner D. (2003) Biochemistry and structure of PrP(C) and PrP(Sc). Br. Med. Bull. 66, 21–33.PubMedCrossRefGoogle Scholar
  121. Riesner D., Kellings K., Post K., Wille H., Serban H., Groth D., et al. (1996) Disruption of prion rods gene-rates 10-nm spherical particles having high alphahelical content and lacking scrapie infectivity. J. Virol. 10, 1714–1722.Google Scholar
  122. Rubenstein R., Carp R. I., and Callahan S. M. (1984) In vitro replication of scrapie agent in a neuronal model: infection of PC12 cells. J. Gen. Virol. 65, 2191–2198.PubMedCrossRefGoogle Scholar
  123. Saborio G. P., Permanne B., and Soto C. (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411, 810–813.PubMedCrossRefGoogle Scholar
  124. Safar J. G., and Kellings K., Serban A., Groth D., Cleaver J. E., Prusiner S. B., and Riesner D. (2005) Search for a prion-specific nucleic acid. J. Virol. 79, 10,796–10,806.CrossRefGoogle Scholar
  125. Sanders C. R. and Nagy J. K. (2000) Misfolding of membrane proteins in health and disease: the lady or the tiger? Curr. Opin. Struct. Biol. 10, 438–442.PubMedCrossRefGoogle Scholar
  126. Sanghera N. and Pinheiro T. J. (2002) Binding of prion protein to lipid membranes and implications for prion conversion. J. Mol. Biol. 315, 1241–1256.PubMedCrossRefGoogle Scholar
  127. Sarnataro D., Campana V., Paladino S., Stornaiuolo M., Nitsch L., and Zurzolo C. (2004) PrPC Association with lipid rafts in the early secretory pathway stabilizes its cellular conformation. Mol. Biol. Cell 15, 4031–4042.PubMedCrossRefGoogle Scholar
  128. Schatzl H. M., Laszlo L., Holtzman D. M., Tatzelt J., De-Armond S. J., Weiner R. I., et al. (1997) Anypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J. Virol. 71, 8821–8831.PubMedGoogle Scholar
  129. Schmitt-Ulms G., Legname G., Baldwin M. A., Ball H. L., Bradon N., Bosque P. J., et al. (2001) Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J. Mol. Biol. 314, 1209–1225.PubMedCrossRefGoogle Scholar
  130. Schonberger O., Horonchik L., Gabizon R., Papy-Garcia D., Barritault D., and Taraboulos A. (2003) Novel heparan mimetics potently inhibit the scrapie prion protein and its endocytosis. Biochem. Biophys. Res. Commun. 312, 473–479.PubMedCrossRefGoogle Scholar
  131. Shibuya S., Higuchi J., Shin R. W., Tateishi J., and Kitamoto T. (1998) Protective prion protein polymorphisms a gainst sporadic Creutzfeldt-Jakob disease. Lancet 351, 419.PubMedCrossRefGoogle Scholar
  132. Shyng S. L., Heuser J. E., and Harris D. A. (1994) Aglyco-lipid-anchored prion protein is endocytosed via clathrin-coated pits. J. Cell Biol. 125, 1239–1250.PubMedCrossRefGoogle Scholar
  133. Simons M., Keller P., De Strooper B., Beyreuther K., Dotti C. G., and Simons K. (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippo-campal neurons. Proc. Natl. Acad. Sci. U. S. A. 95, 6460–6464.PubMedCrossRefGoogle Scholar
  134. Soto C., Saborio G. P., and Anderes L. (2002) Cyclic ampli-fication of protein misfolding: application toprion-related disorders and beyond. Trends Neurosci. 25, 390–394.PubMedCrossRefGoogle Scholar
  135. Staniforth R. A., Giannini S., Higgins L. D., Conroy M. J., Hounslow A. M., Jerala R., et al. (2001) Three-dimensional domain swapping in the folded and molten-globule states of cystatins, an amyloid-forming structural superfamily. EMBO J. 20, 4774–4781.PubMedCrossRefGoogle Scholar
  136. Stockel J. and Hartl F. U. (2001) Chaperonin-mediated de novo generation of prion protein aggregates. J. Mol. Biol. 313, 861–872.PubMedCrossRefGoogle Scholar
  137. Stuermer C. A., Langhorst M. F., Wiechers M. F., Legler D. F., Von Hanwehr S. H., Guse A. H., and Plattner H. (2004) PrPc capping in T cells promotes its association with the lipid raft proteins reggie-1 and reggie-2 and leads to signal transduction. FASEB J. 18, 1731–1733.PubMedGoogle Scholar
  138. Supattapone S. (2004) Prion protein conversion in vitro. J. Mol. Med. 82, 348–356.PubMedCrossRefGoogle Scholar
  139. Supattapone S., Nguyen H. O., Cohen F. E., Prusiner S. B., and Scott M. R. (1999) Elimination of prions by branched polyamines and implications for therapeutics. Proc. Natl. Acad. Sci. U. S. A. 96, 14,529–14,534.CrossRefGoogle Scholar
  140. Taraboulos A., Raeber A. J., Borchelt D. R., Serban D., and Prusiner S. B. (1992) Synthesis and trafficking of prion proteins in cultured cells. Mol. Biol. Cell 3, 851–863.PubMedGoogle Scholar
  141. Taraboulos A., Scott M., Semenov A., Avrahami D., Laszlo L., Prusiner S. B., and Avraham D. (1995) Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J. Cell Biol. 129, 121–132.PubMedCrossRefGoogle Scholar
  142. Telling G. C., Parchi P., DeArmond S. J., Cortelli P., Montagna P., Gabizon R., et al. (1996) Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274, 2079–2082.PubMedCrossRefGoogle Scholar
  143. Telling G. C., Scott M., Hsiao K. K., Foster D., Yang S. L., Torchia M., et al. (1994) Transmission of Creutzfeldt-Jakob disease from humans to transgenic mice expressing chimeric human-mouse prion protein. Proc. Natl. Acad. Sci. U. S. A. 91, 9936–9940.PubMedCrossRefGoogle Scholar
  144. Telling G. C., Scott M., Mastrianni J., Gabizon R., Torchia M., Cohen F. E., et al. (1995) Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83, 79–90.PubMedCrossRefGoogle Scholar
  145. Vilette D., Andreoletti O., Archer F., Madelaine M. F., Vilotte J. L., Lehmann S., and Laude H. (2001) Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc. Natl. Acad. Sci. U. S. A. 98, 4055–4059.PubMedCrossRefGoogle Scholar
  146. Vorberg I., Raines A., Story B., and Priola S. A. (2004) Susceptibility of common fibroblast cell lines to trans-missible spongiform encephalopathy agents. J. Infect. Dis. 189, 431–439.PubMedCrossRefGoogle Scholar
  147. Weissmann C. (1991) A ‘unified theory’ of prion propagation. Nature 352, 679–683.PubMedCrossRefGoogle Scholar
  148. Weissmann C. (2004) The state of the prion. Nat. Rev. Microbiol. 2, 861–871.PubMedCrossRefGoogle Scholar
  149. Weissmann C. and Flechsig E. (2003) PrP knock-out and PrP transgenic mice in prion research. Br. Med. Bull. 66, 43–60.PubMedCrossRefGoogle Scholar
  150. Welker E., Raymond L. D., Scheraga H. A., and Caughey B. (2002) Intramolecular versus intermolecular disul-fide bonds in prion proteins. J. Biol. Chem. 277, 33,477–33,481.CrossRefGoogle Scholar
  151. Westaway D., DeArmond S. J., Cayetano-Canlas J., Groth D., Foster D., Yang S. L., et al. (1994) Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell 76, 117–129.PubMedCrossRefGoogle Scholar
  152. Will R. G., Ironside J. W., Zeidler M., Cousens S. N., Estibeiro K., Alperovitch A., et al. (1996) A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347, 921–925.PubMedCrossRefGoogle Scholar
  153. Wollmer M. A., Streffer J. R., Lutjohann D., Tsolaki M., Iakovidou V., Hegi T., et al. (2003) ABCA1 modulates CSF cholesterol levels and influences the age at onset of Alzheimer's disease. Neurobiol. Aging 24, 421–426.PubMedCrossRefGoogle Scholar
  154. Wong C., Xiong L. W., Horiuchi M., Raymond L., Wehrly K., Chesebro B., and Caughey B. (2001) Sullated glycans and elevated temperature stimulate PrP(Sc)-dependent cell-free formation of protease-resistant prion protein. EMBO J. 20, 377–386.PubMedCrossRefGoogle Scholar
  155. Xiang W., Windl O., Wunsch G., Dugas M., Kohlmann A., Dierkes N., et al. (2004) Identification of differentially expressed genes in scrapie-infected mouse brains by using global gene expression technology. J. Virol. 78, 11,051–11,060.CrossRefGoogle Scholar
  156. Yehiely F., Bamborough P., Da Costa M., Perry B. J., Thinakaran G., Cohen F. E., et al. (1997) Identification of candidate proteins binding to prion protein. Neurobiol. Dis. 3, 339–355.PubMedCrossRefGoogle Scholar
  157. Zanata S. M., Lopes M. H., Mercadante A. F., Hajj G. N., Chiarini L. B., Nomizo R., et al. (2002) Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J. 21, 3307–3316.PubMedCrossRefGoogle Scholar
  158. Zhang H., Kaneko K., Nguyen J. T., Livshits T. L., Baldwin M. A., Cohen F. E., et al. (1995) Conformational transitions in peptides containing two putative alpha-helices of the prion protein. J. Mol. Biol. 250, 514–526.PubMedCrossRefGoogle Scholar
  159. Zhang Y., Spiess E., Groschup M. H., and Burkle A. (2003) Up-regulation of cathepsin B and cathepsin L activities in scrapie-infected mouse Neuro2a cells. J. Gen. Virol. 84, 2279–2283.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Carlo Fasano
    • 1
  • Vincenza Campana
    • 1
    • 2
  • Chiara Zurzolo
    • 1
    • 2
  1. 1.Unité de Trafic Membranaire et PathogénéseInstitut PasteurParis Cedex 15France
  2. 2.Dipartimento di Biologia e Patologia Cellulare e Molecolare and CEINGE, Centro di Biotecnologie AvanzateUniversità degli Studi di Napoli “Federico II”NapoliItaly

Personalised recommendations