Advertisement

Journal of Molecular Neuroscience

, Volume 29, Issue 3, pp 185–194 | Cite as

The innate immune facet of brain

Human neurons express TLR-3 and sense viral dsRNA
  • Monique Lafon
  • Françoise Megret
  • Mireille Lafage
  • Christophe Prehaud
Original Article

Abstract

Inflammation is an important factor in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease or multiple sclerosis, and during microbial infections of the nervous system. Glial cells were thought to be the main contributor for cytokine and chemokine production and Toll-like receptor (TLR) expression in the brain. Here, we report that human neurons express TLR-3, a major receptor in virus-mediated innate immune response. We established that these cells can mount a strong inflammatory response characterized by the expression of inflammatory cytokines (TNF-α, IL-6), chemokines (CCL-5 and CXCL-10), and antiviral molecules (2′5′OAS and IFN-β) after treatment with dsRNA—a by-product of viral infection and ligand of TLR-3. This work firmly establishes that human neurons, in absence of glia, have the intrinsic machinery to trigger robust inflammatory, chemoattractive, and antiviral responses.

Index Entries

Neurons TLR-3 dsRNA IFN-β NT2-N cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachoo R. M., Kim R. S., Ligon K. L., Maher E. A., Brennan C., Billings N., et al. (2004) Molecular diversity of astrocytes with implications for neurological disorders. Proc. Natl. Acad. Sci. U. S. A. 101, 8384–8389.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bell J. K., Botos I., Hall P. R., Askins J., Shiloach J., Segal D. M., and Davies D. R. (2005) The molecular structure of the Toll-like receptor 3 ligand-binding domain. Proc. Natl. Acad. Sci. U. S. A. 102, 10,976–10,980.CrossRefGoogle Scholar
  3. Boehme K. W. and Compton T. (2004) Innate sensing of viruses by toll-like receptors. J. Virol. 78, 7867–7873.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boivin G., Coulombe Z., and Rivest S. (2002) Intranasal herpes simplex virus type 2 inoculation causes a profound thymidine kinase dependent cerebral inflammatory response in the mouse hindbrain. Eur. J. Neurosci. 16, 29–43.CrossRefPubMedGoogle Scholar
  5. Bottcher T., von Mering M., Ebert S., Meyding-Lamade U., Kuhnt U., Gerber J., and Nau R. (2003) Differential regulation of Toll-like receptor mRNAs in experimental murine central nervous system infections. Neurosci. Lett. 344, 17–20.CrossRefPubMedGoogle Scholar
  6. Boulanger L. M. and Shatz C. J. (2004) Immune signalling inneural development, synaptic plasticity and disease. Nat. Rev. Neurosci. 5, 521–531.CrossRefPubMedGoogle Scholar
  7. Bsibsi M., Ravid R., Gveric D., and van Noort J. M. (2002) Broad expression of Toll-like receptors in the human central nervous system. J. Neuropathol. Exp. Neurol. 61, 1013–1021.CrossRefPubMedGoogle Scholar
  8. Campos M. A., Almeida I. C., Takeuchi O., Akira S., Valente E. P., Procopio D. O., et al. (2001) Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J. Immunol. 167, 416–423.CrossRefPubMedGoogle Scholar
  9. Cario E. and Podolsky D. K. (2000) Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immunol. 68, 7010–7017.CrossRefGoogle Scholar
  10. Cheung W. M., Fu W. Y., Hui W. S., and Ip N. Y. (1999) Production of human CNS neurons from embryonal carcinoma cells using a cell aggregation method. Biotechniques 26, 946–954.PubMedGoogle Scholar
  11. Corriveau R. A., Huh G. S., and Shatz C. J. (1998) Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21, 505–520.CrossRefPubMedGoogle Scholar
  12. Coughlan C. M., McManus C. M., Sharron M., Gao Z., Murphy D., Jaffer S., et al. (2000) Expression of multiple functional chemokine receptors and monocyte chemoattractant protein-1 in human neurons. Neuroscience 97, 591–600.CrossRefPubMedGoogle Scholar
  13. Cowan E. P., Alexander R. K., Daniel S., Kashanchi F., and Brady J. N. (1997) Induction of tumor necrosis factor alpha in human neuronal cells by extracellular human T-cell lymphotropic virus type 1 Tax. J. Virol. 71, 6982–6989.PubMedPubMedCentralGoogle Scholar
  14. Farina C., Krumbholz M., Giese T., Hartmann G., Aloisi F., and Meinl E. (2005) Preferential expression and function of Toll-like receptor 3 in human astrocytes. J. Neuroimmunol. 159, 12–19.CrossRefPubMedGoogle Scholar
  15. Finberg R. W. and Kurt-Jones E. A. (2004) Viruses and Toll-like receptors. Microbes Infect. 6, 1356–1360.CrossRefPubMedGoogle Scholar
  16. Guillot L., Le Goffic R., Bloch S., Escriou N., Akira S., Chignard M., and Si-Tahar M. (2005) Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J. Biol. Chem. 280, 5571–5580.CrossRefPubMedGoogle Scholar
  17. Guo C. J., Douglas S. D., Lai J. P., Pleasure D. E., Li Y., Williams M., et al. (2003) Interleukin-1beta stimulates macrophage inflammatory protein-1alpha and-1beta expression in human neuronal cells (NT2-N). J. Neurochem. 84, 997–1005.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Huh G. S., Boulanger L. M., Du H., Riquelme P. A., Brotz T. M., and Shatz C. J. (2000) Functional requirement for class I MHC in CNS development and plasticity. Science 290, 2155–2159.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Irwin D. J., Wunner W. H., Ertl H. C., and Jackson A. C. (1999) Basis of rabies virus neurovirulence in mice: expression of major histocompatibility complex class I and class II mRNAs. J. Neurovirol. 5, 485–494.CrossRefPubMedGoogle Scholar
  20. Jack C. S., Arbour N., Manusow J., Montgrain V., Blain M., McCrea E., et al. (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J. Immunol. 175, 4320–4330.CrossRefPubMedGoogle Scholar
  21. Jackson A. C., Rossiter J. P., and Lafon M. (2006) Expression of Toll-like receptor 3 in the human cerebellar cortex in rabes, herpes simplex encephalitis, and other neurological diseases. Pediatr. Infect. Dis. J. 25, 570.CrossRefPubMedGoogle Scholar
  22. Jacobs B. L. and Langland J. O. (1996) When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology 219, 339–349.CrossRefPubMedGoogle Scholar
  23. Janabi N., Peudenier S., Heron B., Ng K. H., and Tardieu M. (1995) Establishment of human microglial cell lines after transfection of primary cultures of embryonic microglial cells with the SV40 large T antigen. Neurosci. Lett. 195, 105–108.CrossRefPubMedGoogle Scholar
  24. Kang D. C., Gopalkrishnan R. V., Wu Q., Jankowsky E., Pyle A. M., and Fisher P. B. (2002) mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc. Natl. Acad. Sci. U. S. A. 99, 637–642.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kato H., Sato S., Yoneyama M., Yamamoto M., Uematsu S., Matsui K., et al. (2005) Cell type-specific involvement of RIG-I in antiviral response. Immunity 23, 19–28.CrossRefPubMedGoogle Scholar
  26. Kleppner S. R., Robinson K. A., Trojanowski J. Q., and Lee V. M. (1995) Transplanted human neurons derived from a teratocarcinoma cell line (NTera-2) mature, integrate, and survive for over 1 year in the nude mouse brain. J. Comp. Neurol. 357, 618–632.CrossRefPubMedGoogle Scholar
  27. Koedel U., Angele B., Rupprecht T., Wagner H., Roggenkamp A., Pfister H. W., and Kirschning C. J. (2003) Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis. J. Immunol. 170, 438–444.CrossRefPubMedGoogle Scholar
  28. Lafon M., Prehaud C., Megret F., Lafage M., Mouillot G., Roa M., Moreau P., et al. (2005) Modulation of HLA-G expression in human neural cells after neurotropic viral infections. J. Virol. 79, 15,226–15,237.CrossRefGoogle Scholar
  29. Li Y., Douglas S. D., Pleasure D. E., Lai J., Guo C., Bannerman P., et al. (2003) Human neuronal cells (NT2-N) express functional substance P and neurokinin-1 receptor coupled to MIP-1 beta expression. J. Neurosci. Res. 71, 559–566.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Loconto J., Papes F., Chang E., Stowers L., Jones E. P., Takada T., et al. (2003) Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112, 607–618.CrossRefPubMedGoogle Scholar
  31. Maier S., Geraghty D. E., and Weiss E. H. (1999) Expression and regulation of HLA-G in human glioma cell lines. Transplant. Proc. 31, 1849–1853.CrossRefPubMedGoogle Scholar
  32. Matsumoto M., Funami K., Tanabe M., Oshiumi H., Shingai M., Seto Y., et al. (2003) Subcellular localization of Toll-like receptor 3 in human dendritic cells. J. Immunol. 171, 3154–3162.CrossRefPubMedGoogle Scholar
  33. McKimmie C. S., Johnson N., Fooks A. R., and Fazakerley J. K. (2005) Viruses selectively upregulate Toll-like receptors in the central nervous system. Biochem. Biophys. Res. Commun. 336(3), 925–933.CrossRefPubMedGoogle Scholar
  34. Medana I. M., Gallimore A., Oxenius A., Martinic M. M., Wekerle H., and Neumann H. (2000) MHC class I-restricted killing of neurons by virus-specific CD8+ T lymphocytes is effected through the Fas/FasL, but not the perforin pathway. Eur. J. Immunol. 30, 3623–3633.CrossRefPubMedGoogle Scholar
  35. Miettinen M., Sareneva T., Julkunen I., and Matikainen S. (2001) IFNs activate toll-like receptor gene expression in viral infections. Genes Immun. 2, 349–355.CrossRefPubMedGoogle Scholar
  36. Muzio M., Bosisio D., Polentarutti N., D'Amico G., Stoppacciaro A., Mancinelli R., et al. (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J. Immunol. 164, 5998–6004.CrossRefPubMedGoogle Scholar
  37. Neumann H., Medana I. M., Bauer J., and Lassmann H. (2002) Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci. 25, 313–319.CrossRefPubMedGoogle Scholar
  38. Neumann H., Schmidt H., Cavalie A., Jenne D., and Wekerle H. (1997) Major histocompatibility complex (MHC) class I gene expression in single neurons of the central nervous system: differential regulation by interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha. J. Exp. Med. 185, 305–316.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nguyen M. D., Julien J. P., and Rivest S. (2002) Innateimmunity: the missing link in neuroprotection and neurodegeneration? Nat. Rev. Neurosci. 3, 216–227.CrossRefPubMedGoogle Scholar
  40. Paquet-Durand F., Tan S., and Bicker G. (2003) Turning teratocarcinoma cells into neurons: rapid differentiation of NT-2 cells in floating spheres. Brain Res. Dev. Brain Res. 142, 161–167.CrossRefPubMedGoogle Scholar
  41. Pereira R. A. and Simmons A. (1999) Cell surface expression of H2 antigens on primary sensory neurons in response to acute but not latent herpes simplex virus infection in vivo. J. Virol. 73, 6484–6489.PubMedPubMedCentralGoogle Scholar
  42. Pleasure S. J., Page C., and Lee V. M. (1992) Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J. Neurosci. 12, 1802–1815.PubMedGoogle Scholar
  43. Prehaud C. F. Megret F., Lafage M., and Lafon M. (2005) Virus infection switches TLR-3-positive human neurons to become strong producers of interferon-beta. J. Virol. 79, 12,893–12,904.CrossRefGoogle Scholar
  44. Redwine J. M., Buchmeier M. J., and Evans C. F. (2001) In vivo expression of major histocompatibility complex molecules on oligodendrocytes and neurons during viral infection. Am. J. Pathol. 159, 1219–1224.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Scolding N. J., Frith S., Linington C., Morgan B. P., Campbell A. K., and Compston D. A. (1989) Myelin-oligodendrocyte glycoprotein (MOG) is a surface marker of oligodendrocyte maturation. J. Neuroimmunol. 22, 169–176.CrossRefPubMedGoogle Scholar
  46. Siren J., Pirhonen J., Julkunen I., and Matikainen S. (2005) IFN-alpha regulates TLR-dependent gene expression of IFN-alpha, IFN-beta, IL-28, and IL-29. J. Immunol. 174, 1932–1937.CrossRefPubMedGoogle Scholar
  47. Takeda K. and Akira S. (2004) TLR signaling pathways. Semin. Immunol. 16, 3–9.CrossRefPubMedGoogle Scholar
  48. Takeuchi O., Hoshino K., Kawai T., Sanjo H., Takada H., Ogawa T., et al. (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451.CrossRefPubMedGoogle Scholar
  49. tenOever B. R., Sharma S., Zou W., Sun Q., Grandvaux N., Julkunen I., et al. (2004) Activation of TBK1 and IKK epsilon kinases by vesicular stomatitis virus infection and the role of viral ribonucleoprotein in the development of interferon antiviral immunity. J. Virol. 78, 10,636–10,649.CrossRefGoogle Scholar
  50. Trojanowski J. Q., Kleppner S. R., Hartley R. S., Miyazono M., Fraser N. W., Kesari S., and Lee V. M. (1997) Transfectable and transplantable postmitotic human neurons: a potential “platform” for gene therapy of nervous system diseases. Exp. Neurol. 144, 92–97.CrossRefPubMedGoogle Scholar
  51. Wang Z. W., Sarmento L., Wang Y., et al. (2005) Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J. Virol. 79(19), 12,554–12,565.CrossRefGoogle Scholar
  52. Wright G. J., Puklavec M. J., Willis A. C., Hoek R. M., Sedgwick J. D., Brown M. H., and Barclay A. N. (2000) Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 13, 233–242.CrossRefPubMedGoogle Scholar
  53. Yang E., Shin J. S., Kim H., Park H. W., Kim M. H., Kim S. J., and Choi I. H. (2004) Cloning of TLR3 isoform. Yonsei Med. J. 45, 359–361.CrossRefPubMedGoogle Scholar
  54. Younkin D. P., Tang C. M., Hardy M., Reddy U. R., Shi Q. Y., Pleasure S. J., et al. (1993) Inducible expression of neuronal glutamate receptor channels in the NT2 human cell line. Proc. Natl. Acad. Sci. U. S. A. 90, 2174–2178.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Monique Lafon
    • 1
  • Françoise Megret
    • 1
  • Mireille Lafage
    • 1
  • Christophe Prehaud
    • 1
  1. 1.Unité de Neuroimmunologie Virale, Department of NeuroscienceInstitut PasteurParisFrance

Personalised recommendations