Journal of Molecular Neuroscience

, Volume 29, Issue 2, pp 101–107 | Cite as

Pharmacological characterization of orally active cholinesterase inhibitory activity of Prunus persica L. Batsch in rats

  • Seok-Jong Suh
  • Byung-Soo Koo
  • Un-Ho Jin
  • Moon-Je Hwang
  • In-Seon Lee
  • Cheorl-Ho KimEmail author
Original Article


Prunus persica L. Batsch water extract (PPE) is a potent acetylcholinesterase (AChE) inhibitor screened for the treatment of Alzheimer's disease. The effects of oral administration of the PPE were examined with comparison of those of selective butyrylcholinesterase inhibitors of 9-amino-1,2,3,4-tetrahydroacridine hydrochloride (tacrine) and tetraidopropylpyrophosphoramide (iso-OMPA) and a selective AChE inhibitor, donepezil, on the cholinesterase activity in the brain and plasma of rats. After the sequential solvent fractionation of the methanol extract of P. persica L. Batsch, the highest inhibitory fraction was that of chloroform (75%). The concentration that was required for 50% enzyme inhibition (IC50 value) was 5.6 μg/mL. for the chloroform fraction. Oral administration of PPE or tacrine caused a dose-dependent inhibition of brain and plasma cholinesterase activities. The ID50 values of these compounds for brain cholinesterase activity were 2.7 g/kg and 8.9 mg/kg, respectively. On the other hand, the ID50 values for plasma cholinesterase activity were 18.6 g/kg and 27.5 mg/kg, respectively. Thus, the ratios of the ID50 (plasma<brain) were 6.0 and 3.1, respectively. These results suggest that orally administered PPE satisfactorily penetrates into the brain and inhibits cholinesterase there and that PPE is a potent inhibitor of brain cholinesterase in comparison with plasma cholinesterase in vivo.

Index Entries

Alzheimer's disease cholinesterase cholinesterase inhibitor PPE tacrine iso-OMPA donepezil 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akgur S. A., Ozturk P., Sozmen E. Y., Delen Y., Tanyalcin T., and Ege B. (1999) Paraoxonase and acetylcholinesterase activities in humans exposed to organophos-phorous compounds, J. Toxicol. Environ. Health 58, 467–474.Google Scholar
  2. Cohen R. and Barenholz Y. (1984) Characterization of the association of Electrophorus electricus acetyl-cholinesterase with sphingomyelin liposomes. Relevance to collagen-sphingomyelin interactions. Biochim. Biophys. Acta 778, 94–104.PubMedCrossRefGoogle Scholar
  3. Davis P. and Maloney A. J. (1976) Selective loss of central cholinergic neurons in Alzheimer disease. Lancet 2(8000), 1403.CrossRefGoogle Scholar
  4. Drachman D. A. (1977) Memory and cognitive function in man: does the cholinergic system have a specific role. Neurology 27, 783–790.PubMedGoogle Scholar
  5. Edwards J. A. and Brimijoin S. (1982) Divergent regulation of acetylcholinesterase and butyrylcholinesterase in tissues of the rat. J. Neurochem. 38, 1393–1403.PubMedCrossRefGoogle Scholar
  6. Ellman G. L., Courtney D., Andres V. Jr. and Featherstone R. M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95PubMedCrossRefGoogle Scholar
  7. Fang X. D. (1986) Active protein constituents from the kernel of Prunus persica. Zhong Yao Tong Bao 11(11), 37–39.PubMedGoogle Scholar
  8. Forette F., Anand R., and Gharabawi G. (1999) A phase II study in patients with Alzheimer's disease to assess the preliminary efficacy and maximum tolerated dose of rivastigmine (Exelon). Eur. J. Neurol. 6, 423–429.PubMedCrossRefGoogle Scholar
  9. Fuhrman B., Partoush A., and Aviram M. (2004) Acetylcholine esterase protects LDL against oxidation. Biochem. Biophys. Res. Commun. 322(3), 974–978PubMedCrossRefGoogle Scholar
  10. Gilani A. H., Aziz N., Ali S. M., and Saeed M. (2000) Pharmacological basis for the use of peach leaves in constipation. J. Ethnopharmacol. 73, 87–93.PubMedCrossRefGoogle Scholar
  11. Hass M. A., Nowak D. M., Leonova E., Levin R. M., and Longhurst P. A. (1999) Identification of components of Prunus africana extract that inhibit lipid peroxidation. Phytomedicine 6(5), 379–388.PubMedGoogle Scholar
  12. Heo J., 1991 Dong-eui-bo-gam. Nam-san-dang Publishing Co. Seoul, Korea. p. 712.Google Scholar
  13. Kim H. J., Lee W. H., Yoon C. H., Jeong J. C., Nam K. S., Kim H. M., et al. (2001). Bombycis corpus extract prevents amyloid-beta-induced cytotoxicity and protects superoxide dismutase activity in cultured rat astrocytes. Pharmacol. Res. 43, 11–16.PubMedCrossRefGoogle Scholar
  14. Kosasa T., Kuriya Y., Matsu K., and Yamanishi Y. (2000) Inhibitory effect of orally administered tacrine, a novel treatment for Alzheimer's disease, on cholinesterase activity in rats. Eur. J. Pharmacol. 389, 173–179.PubMedCrossRefGoogle Scholar
  15. Menache R., Kenda L., Shaked P., Schwartzman S., and Lewinski U. (1982) The prognostic value of serum acetylcholinesterase in myocardial infarction. Theoretical and clinical considerations. Res. Exp. Med. (Berl.) 181, 181–187.CrossRefGoogle Scholar
  16. Nordberg A. and Svensson A. L. (1998) Cholinesterase inhibitors in the treatment of Alzheimer's disease: a comparison of tolerability and pharmacology. Drug Safety 19, 465–480.PubMedCrossRefGoogle Scholar
  17. Perry E. K., Tomlinson B. E., Blessed G., Bergma K., Gibson P. H., and Perry R. H. (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br. Med. J. 2, 1456–1459.CrossRefGoogle Scholar
  18. Rogers S. L., Farlow M. R., Doody R. S., Mohs R., and Friedhoff L. T. (1998) A 24-week, double-blind, placebocontrolled trial of donepezil in patients with Alzheimer's disease. Donepezil Study Group. Neurology 50, 136–145.PubMedGoogle Scholar
  19. Shen D., Shen L., and Wang A. L. (1994) Effect of xiaoyu pain on new platelet aggregation defect. Zhongguo Zhong Xi Yi Jie He Za Zhi 14, 589–591.PubMedGoogle Scholar
  20. Sherman K. A. (1991) Pharmacodynamics of oral E2020 and tacrine in humans: novel approaches, in Cholinergic Basis for Alzheimer Therapy, Becker, R., and Giacobini, E., eds. Birkhauser, Boston, MA, pp. 321–328.Google Scholar
  21. Summers W. K., Majovski L. V., Marsh, G. M., Tachiki K., and Kling A. (1986) Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer's type. N. Engl. J. Med. 315, 1241–1245.PubMedCrossRefGoogle Scholar
  22. Weiner L., Kreimer D., Roth E., and Silman I. (1994) Oxidative stress transforms acetylcholinesterase to a moltenglobule-like state. Biochem. Biophys. Res. Commun. 198, 915–922.PubMedCrossRefGoogle Scholar
  23. White P., Hiley C. R., Goodhardt M. J., et al. (1977) Neocortical cholinergic neurons in elderly people. Lancet 1(8013) 668–671.PubMedCrossRefGoogle Scholar
  24. Wilcock G. K., Lilienfeld S., and Gaens E. (2000) Efficacy and safety of galantamine in patients with mild to moderate Alzheimer's disease: multicentre randomised controlled trial. Galantamine International-1 Study Group. Br. Med. J. 321, 1445–1449.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Seok-Jong Suh
    • 1
  • Byung-Soo Koo
    • 2
  • Un-Ho Jin
    • 1
  • Moon-Je Hwang
    • 1
    • 2
  • In-Seon Lee
    • 3
  • Cheorl-Ho Kim
    • 1
    Email author
  1. 1.Department of Biological SciencesSungkyunkwan UniversitySuwon City, Kyunggi-DoKorea
  2. 2.Department of Neuropsychiatry, College of Oriental MedicineDongguk UniversityKyungbukKorea
  3. 3.The Center of Traditional Microorganism Resources (TMR)Keimyung UniversityDaeguKorea

Personalised recommendations