Journal of Molecular Neuroscience

, Volume 28, Issue 2, pp 161–178 | Cite as

α-synuclein budding yeast model

Toxicity enhanced by impaired proteasome and oxidative stress
  • Nijee Sharma
  • Katrina A. Brandis
  • Sara K. Herrera
  • Brandon E. Johnson
  • Tulaza Vaidya
  • Ruja Shrestha
  • Shubhik K. DebBurman
Original Article

Abstract

Parkinson's disease (PD) is a common neurodegenerative disorder that results from the selective loss of midbrain dopaminergic neurons. Misfolding and aggregation of the protein α-synuclein, oxidative damage, and proteasomal impairment are all hypotheses for the molecular cause of this selective neurotoxicity. Here, we describe a Saccharomyces cerevisiae model to evaluate the misfolding, aggregation, and toxicity-inducing ability of wild-type α-synuclein and three mutants (A30P, A53T, and A30P/A53T), and we compare regulation of these properties by dysfunctional proteasomes and by oxidative stress. We found prominent localization of wild-type and A53T α-synuclein near the plasma membrane, supporting known in vitro lipid-binding ability. In contrast, A30P was mostly cytoplasmic, whereas A30P/A53T displayed both types of fluorescence. Surprisingly, α-synuclein was not toxic to several yeast strains tested. When yeast mutants for the proteasomal barrel (doa3-1) were evaluated, delayed α-synuclein synthesis and membrane association were observed; yeast mutant for the proteasomal cap (sen3-1) exhibited increased accumulation and aggregation of α-synuclein. Both sen3-1 and doa3-1 mutants exhibited synthetic lethality with α-synuclein. When yeasts were challenged with an oxidant (hydrogen peroxide), α-synuclein was extremely lethal to cells that lacked managanese superoxide dismutase Mn-SOD (sod2Δ) but not to cells that lacked copper, zinc superoxide dismutase Cu,Zn-SOD (sod1Δ). Despite the toxicity, sod2Δ cells never displayed intracellular aggregates of α-synuclein. We suggest that the toxic α-synuclein species in yeast are smaller than the visible aggregates, and toxicity might involve α-synuclein membrane association. Thus, yeasts have emerged effective organisms for characterizing factors and mechanisms that regulate α-synuclein toxicity.

Index Entries

α-Synuclein Parkinson's disease neurodegeneration Saccharomyces cerevisiae protein misfolding lipid binding proteasome aggregation superoxide dismutase oxidative stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeliovich A., Schmitz Y., Farinas I., Choi-Lundber D., Wei-Hsien H., Castillo P. E., et al. (2000) Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25, 239–252.PubMedCrossRefGoogle Scholar
  2. Alim M. A., Ma Q. L., Takeda K., Aizawa T., Matsubara M., Nakamura M., et al. (2004) Demonstration of a role for alpha-synuclein as a functional microtubule-associated protein. J. Alzheimer's Dis. 6, 435–449.Google Scholar
  3. Andreassen O. A., Ferrante R. J., Dedeoglu A., Albers D. W., Klivenyi P., Carlson E. J., et al. (2001) Mice with a partial deficiency of manganese superoxide dismutase show increased vulnerability to the mitochondrial toxins malonate, 3-nitropropionic acid, and MPTP. Exp. Neurol. 167, 189–195.PubMedCrossRefGoogle Scholar
  4. Arendt C. C. and Hochstrasser M. (1999) Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J. 18, 3575–3585.PubMedCrossRefGoogle Scholar
  5. Auluck P., Chan E., Trojanowski J., Lee V., and Bonini N. (2002) chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295, 865–868.PubMedCrossRefGoogle Scholar
  6. Bonifati V., Rizzu P., van Baren M. J., Schaap O., Breedveld G. J., Krieger E., et al. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259.PubMedCrossRefGoogle Scholar
  7. Brandis K., Holmes I., and England S. (2006) α-Synuclein fission yeast model: concentration-dependent aggregation without membrane localization or toxicity. J. Mol. Neurosci., 28(6), 179–191.PubMedCrossRefGoogle Scholar
  8. Burke D., Dawson D., and Stearns T. (2000) Methods in Yeast Genetics, Cold Spring Harbor Laboratory Press, New York.Google Scholar
  9. Caughey B. and Lansbury P. T. (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298.PubMedCrossRefGoogle Scholar
  10. Ciechanover A. and Brundin P. (2003) The ubiquitin-proteasome system in neurodegenerative diseases: some-times the chicken, sometimes the egg. Neuron 40, 427–446.PubMedCrossRefGoogle Scholar
  11. Clayton D. and George J. (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci. 21, 249–254.PubMedCrossRefGoogle Scholar
  12. Cole N. B., Murphy D. D., Grider T., Rueter S., Brasaemle D., and Nusbaum R. L. (2002) Lipid droplet binding and oligomerization properties of the Parkinson's disease protein α-synuclein. J. Biol. Chem. 277, 6344–6352.PubMedCrossRefGoogle Scholar
  13. Conway K., Harper J., and Lansbury P. (1998) Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson's disease. Nat. Med. 4, 1318–1320.PubMedCrossRefGoogle Scholar
  14. Conway K., Harper J., and Lansbury P. (2000) Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry 39, 2552–2563.PubMedCrossRefGoogle Scholar
  15. Dauer W. and Przedborski S. (2003) Parkinson's disease: mechanisms and models. Neuron 39, 889–909.PubMedCrossRefGoogle Scholar
  16. Davidson W. S., Jonas A., Clayton D. F., and George J. M. (1998) Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443–9449.PubMedCrossRefGoogle Scholar
  17. Dawson T. M. and Dawson V. L. (2003) Molecular pathways of neurodegeneration in Parkinson's disease. Science 302, 819–822.PubMedCrossRefGoogle Scholar
  18. DeMarini D. J., Papa F. R., Swaminathan S., Ursic D., Rassmussen, T. P., Culbertson M. R., and Hochstrasser M. (1995) The yeast sen3 gene encodes a regulatory subunit of the 26s proteasome complex required for ubiquitin-dependent protein degradation in vivo. Mol. Cell. Biol. 15, 6311–6321.PubMedGoogle Scholar
  19. Dixon C., Mathias N., Zwieg R. M., Davis D. A., and Gross D. S. (2005) Alpha-Synuclein targets the plasma membrane via the secretory pathway and induces toxicity in yeast. Genetics 170, 47–59.PubMedCrossRefGoogle Scholar
  20. Eliezer D., Kutluay E., Bussell R. Jr., and Browne G. (2001) Conformational properties of α-synuclein in its free and lipid-associated states. J. Mol. Biol. 307, 1061–1073.PubMedCrossRefGoogle Scholar
  21. Engelender S., Kaminsky Z., Guo X., Sharp A. H., Amaravi R. K., Kleiderlein J. J., et al. (1999) Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat. Genet. 22, 110–114.PubMedCrossRefGoogle Scholar
  22. Feany M. and Bender W. (2000) A Drosophila model of Parkinson's disease. Nature 23, 294–298.Google Scholar
  23. Funayama M., Hasegawa K., Kowa H., Saito M., Tsuji S., and Obata F. (2002) A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann. Neurol. 51, 296–301.PubMedCrossRefGoogle Scholar
  24. George J. M., Jin H., Woods W. S., and Clayton D. F. (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15, 361–372.PubMedCrossRefGoogle Scholar
  25. Giasson B., Duda J., Quinn S., Zhang B., Trojanowski J., and Lee V. (2002) Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34, 521–533.PubMedCrossRefGoogle Scholar
  26. Giasson B., Uryu K., Trojanowski J., and Lee V. (1999) Mutant and wild type human α-synucleins assemble into elongated filaments with distinct morphologies in vitro. J. Biol. Chem. 274, 7619–7622.PubMedCrossRefGoogle Scholar
  27. Hashimoto M., Takeda A., Hsu L. J., Takenouchi T., and Malsiah E. (1999) Role of cytrochrome c as a stimulator of α-synuclein aggregation in Lewy body disease. J. Biol. Chem. 274, 28,849–28,852.Google Scholar
  28. Hinerfeld D., Traini M. D., Weinberger R. P., Cochran B., Doctrow S. R., Harry J., and Melov S. (2004) Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J. Neurochem. 88, 657–667.PubMedCrossRefGoogle Scholar
  29. Jenco J. M., Rawlingson A., Daniels B., and Morris A. J. (1998) Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry 7, 4901–4909.CrossRefGoogle Scholar
  30. Jenner P. and Olanow C. W. (1996) Oxidative stress and the pathogenesis of Parkinson's disease. Neurology. 47, (6 Suppl. 3), S161-S170.PubMedGoogle Scholar
  31. Jensen P. H., Nielsen M., Jakes R., Dottis C. G., and Goedert M. (1998) Binding of α-synuclein to brain vesicles is abolished by familial Parkinson's disease mutation. J. Biol. Chem. 273, 26,292–26,294.Google Scholar
  32. Kahle P. J., Neumann M., Ozmen L., Müller V., Jacobsen H., Schindzielorz A., et al., (2000) Subcellular localization of wild-type and Parkinson's disease-associated mutant α-synuclein in human and transgenic mouse brain. J. Neurosci. 20, 6365–6373.PubMedGoogle Scholar
  33. Kang J. H. and Kim K. S. (2003) Enhanced oligomerization of the a-Synuclein mutant by the Cu,Zn-superoxide dismutase and hydrogen peroxide system. Mol. Cells 15, 87–93.PubMedGoogle Scholar
  34. Kim K. S., Choi S. Y., Kwon H. Y., Won M. H., Kang T., and Kang J. H. (2002) Aggregation of a-synuclein induced by the Cu,Zn-superoxide dismutase and hydrogen peroxide system. Free Radic. Biol. Med. 32, 544–550.PubMedCrossRefGoogle Scholar
  35. Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Yocochi M., et al. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–606.PubMedCrossRefGoogle Scholar
  36. Krobitsch S. and Lindquist S. (2000) Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl. Acad. Sci. U. S. A. 97, 1589–1594.PubMedCrossRefGoogle Scholar
  37. Kruger R., Kuhn W., Muller T., Woitalla D., Graeber M., Kosel S., et al. (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat. Genet. 18, 106–108.PubMedCrossRefGoogle Scholar
  38. Kunst C., Mezey E., Brownstein M., and Patterson D. (1997) Mutations in SOD1 associated with amyotrophic lateral sclerosis cause novel protein interactions. Nat. Genet. 15, 91–94.PubMedCrossRefGoogle Scholar
  39. Kweon G. R., Marks J. D., Krencik R., Leung E. H., Schumacker P. T., Hyland K., and Kang U. J. (2004) Distinct mechanisms of neurodegeneration induced by chronic complex I inhibition in dopaminergic and non-dopaminergic cells. J. Biol. Chem. 279, 51,783–51,792.CrossRefGoogle Scholar
  40. Lasko M., Vartiainen S., Moilanen A., Sirvio J., Thomas J. H., Nass R., et al. (2003) Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human α-synuclein. J. Neurochem. 86, 165–172.CrossRefGoogle Scholar
  41. Lebovitz R. M., Zhang H., Vogel H., Cartwight J. Jr., Dionne L., Lu N., et al. (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochond rial superoxide dismutase-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 93, 9782–9787.PubMedCrossRefGoogle Scholar
  42. Leroy E., Boyer R., Auburger G., Leube B., Ulm G., Mezzey E., et al. (1998) The ubiquitin pathway in Parkinson's disease. Nature 395, 451–452.PubMedCrossRefGoogle Scholar
  43. Liang L. P. and Patel M. (2004) Mitochondrial oxidative stress and increased seizure susceptibility in Sod2 (−/+) mice. Free Radic. Biol. Med. 36, 542–554.PubMedCrossRefGoogle Scholar
  44. Liu Y., Fallon L., Lashuel H. A., Liu Z., and Lansbury P. T. (2002) The UCHL-1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation in Parkinson's disease susceptibility. Cell 111, 209–218.PubMedCrossRefGoogle Scholar
  45. Lynn S., Huang E. J., Elchuri S., Naeemuddin M., Nishinaka Y., Yodoi J., et al. (2005) Selective neuronal vulnerability and inadequate stress response in superoxide dismutase mutant mice. Free Rad. Biol. Med. 38, 817–828.PubMedCrossRefGoogle Scholar
  46. Ma J. and Lindquist S. (1999) Denovo generation of a PrPsc-like conformation in living cells. Nat. Cell Biol. 1, 358–361.PubMedCrossRefGoogle Scholar
  47. Maguire-Zeiss K. A., Short D. W., and Federoff H. J. (2005) Synuclein, dopamine and oxidative stress: co-conspirators in Parkinson's disease? Mol. Brain Res. 134, 18–23.PubMedCrossRefGoogle Scholar
  48. Masliah E., Rockenstein E., Veinbergs I., Mallory M., Hashimoto M., Takeda A., and Mucke L. (2000) Dopaminergic loss and inclusion body formation in α-Synuclein mice: implications for neurodegenerative disorders. Science 287, 1265–1269.PubMedCrossRefGoogle Scholar
  49. McDonough V. M. and Roth T. M. (2004) Growth temperature affects accumulation of exogenous fatty acids and fatty acid composition in Schizosaccharomyces pombe. Antonie Van Leeuwenhoek 86, 349–354.PubMedCrossRefGoogle Scholar
  50. McDonough and Roth (2004) not cited in text.Google Scholar
  51. McNaught K. S. and Jenner P. (2001) Proteasomal function is impaired in substantia nigra in Parkinson's disease. Neurosci. Lett. 297, 191–194.PubMedCrossRefGoogle Scholar
  52. McNaught K. S., Belizaire R., Isacson O., Jenner P., and Olanow C. W. (2003) Altered proteasomal function in sporadic Parkinson's disease. Exp. Neurol. 179, 38–46.PubMedCrossRefGoogle Scholar
  53. McNaught K. S., Bjorklund L. M., Belizaire R., Isacson O., Jenner P., and Olanowski C. W. (2002a) Proteasomal inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport 13, 1437–1441.PubMedCrossRefGoogle Scholar
  54. McNaught K. S., Mytilineou C., Jnobaptiste R., Yabut J., Shashidharan P., Jennert P., and Olanow C. W. (2002b) Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J. Neurochem. 81, 301–306.PubMedCrossRefGoogle Scholar
  55. Mizuno Y., Ohta S., Tanaka M., Takamiya S., Suzuki K., Sato T., et al. (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem. Biophys. Res. Commun. 163, 1450–1455.PubMedCrossRefGoogle Scholar
  56. Muchowski P., Schaffar G., Sittler A., Wanker E., Hayer-Hartl M., and Hartyl F. (2000) Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl. Acad. Sci. U. S. A. 97, 7841–7846.PubMedCrossRefGoogle Scholar
  57. Murphy D. D., Rueter S. M., Trojanowski J. Q., and Lee V. M. (2000) Synucleins are developmentally expressed, and α-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J. Neurosci. 20, 3214–3220.PubMedGoogle Scholar
  58. Narhi L., Wood S. J., Steavenson S., Jiang Y., Wu G. M., Anafi D., et al. (1999) Both familial Parkinson's disease mutations accelerate α-synuclein aggregation. J. Biol. Chem. 274, 9843–9846.PubMedCrossRefGoogle Scholar
  59. Olanow C. W. and Tatton W. G. (1999) Etiology and pathogenesis of Parkinson's disease. Annu. Rev. Neurosci. 22, 123–144.PubMedCrossRefGoogle Scholar
  60. Ostrerova N., Petrucellil L., Farrer M., Mehta N., Choil P., Hardy J., and Wolozin B. (1999) α-Synuclein shares physical and functional homology with 14-3-3-proteins. J. Neurosci. 19, 5782–5791.PubMedGoogle Scholar
  61. Outeiro T. F. and Lindquist S. (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 203, 1772–1775.CrossRefGoogle Scholar
  62. Outeiro T. F. and Muchowski P. J. (2004) Molecular genetics approaches in yeast to study amyloid diseases. J. Mol. Neurosci. 23, 49–60.PubMedCrossRefGoogle Scholar
  63. Paisan-Ruiz C., Jain S., Evans E. W., Gilks W. P., Simon J., van der Brug M., et al. (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595–600.PubMedCrossRefGoogle Scholar
  64. Perrin R. J., Woods W. S., Clayton D. F., and George J. M. (2000) Interaction of human α-synuclein and Parkinson's disease variants with phospholipids. J. Biol. Chem. 275, 34,393–34,398.CrossRefGoogle Scholar
  65. Pias E. K., Ekshyyan O. Y., Rhoads C. A., Fuseler J., Harrison L., and Aw T. Y. (2003) Differential effects of superoxide dismutase isoform expression on hydroperoxide-induced apoptosis in PC-12 cells. J. Biol. Chem. 278, 13,294–13,301.CrossRefGoogle Scholar
  66. Petrucelli L., O'Farell C., Lockhart P. J., Baptisa M., Kehoe K., Vink L., et al. (2002) Parkin protects against the toxicity associated with mutant α-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36, 1007–1019.PubMedCrossRefGoogle Scholar
  67. Polymeropoulos M. H., Lavedan C., Leroy E., Ide S. E., Dehejia A., Dutra A., et al. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047.PubMedCrossRefGoogle Scholar
  68. Poon H. F., Frasier M., Shreve N., Calabrese V., Wolozin B., and Butterfield D. (2005) Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice—a model of familial Parkinson's disease. Neurobiol. Dis. 18, 492–498.PubMedCrossRefGoogle Scholar
  69. Rochet J. C., Outeiro T. F., Conway K. A., Ding T. T., Volles M. J., Lashuel H. A., et al. (2004) Interactions among alpha-synuclein, dopamine, and biomembranes: some clues for understanding neurodegeneration in Parkinson's disease. J. Mol. Neurosci. 23, 23–34.PubMedCrossRefGoogle Scholar
  70. Sharon R., Goldberg M., Bar I., Betensky R., Shen J., and Selkoe D. (2001) α-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty-acid binding proteins. Proc. Natl. Acad. Sci. U. S. A. 98, 9110–9115.PubMedCrossRefGoogle Scholar
  71. Shendelman S., Jonason A., Martinat C., Leete T., and Abeliovich A. (2004) DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation. PLoS Biol. 2, e362.PubMedCrossRefGoogle Scholar
  72. Sherer T. B., Betarbet R., Stout A. K., Lund S., Baptista M., Panov A. V., et al. (2002) An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J. Neurosci. 22, 7006–7015.PubMedGoogle Scholar
  73. Shimura H., Schlossmacher M., Hattori N., Frosch M., Trockenbacher A., Schneider R., et al. (2001) Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson's disease. Science 293, 263–269.PubMedCrossRefGoogle Scholar
  74. Sisodia S. S. (1998) Nuclear inclusions in glutamine repeat disorders: are they pernicious, coincidental, or beneficial? Cell 95, 1–4.PubMedCrossRefGoogle Scholar
  75. Snyder H., Mensh K., Theisler C., Lee J. L., Matouschek A., and Wolozin B. (2003) Aggregated and monomeric forms of α-synuclein bind to the S6′ proteasomal protein and inhibit proteasomal function. J. Biol. Chem. 278, 11,753–11,759.Google Scholar
  76. Song D. D., Shults C. W., Sisk A., Rockenstein E., and Masliah E. (2004) Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp. Neurol. 186, 158–172.PubMedCrossRefGoogle Scholar
  77. Spillantini M., Schmidt M., Lee V., Trojanowski J., Lakes R., and Goedert M. (1998) α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A. 95, 6469–6473.PubMedCrossRefGoogle Scholar
  78. Taylor J. P., Hardy J., and Fishbeck K. H. (2002) Toxic proteins in neurodegenerative disease. Science 296, 1991–1995.PubMedCrossRefGoogle Scholar
  79. Testa C. M., Sherer T. B., and Greenamyre J. T. (2005) Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Mol. Brain Res. 134, 109–118.PubMedCrossRefGoogle Scholar
  80. Thiruchelvam M., Prokopenk O., Cory-Slechta D. A., Richfield E. K., Buckley B., and Mirochnitchenko O. (2005) Overexpression of superoxide dismutase or glutathione peroxidase protects against the paraquat+ maneb-induced Parkinson's disease phenotype. J. Biol. Chem. 280, 22,530–22,539.CrossRefGoogle Scholar
  81. Valente E. M., Abou-Sleiman P. M., Caputo V., Muqit M. M., Harvey K., Gispert S., et al. (2004) Hereditary earlyonset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160.PubMedCrossRefGoogle Scholar
  82. Wersinger C., Prou D., Vernier P., Niznik H. B., and Sidhu A. (2003) Mutations in the lipid-binding domain of alpha-synuclein confer overlapping yet distinct, functional properties in the regulation of dopamine transporter activity. Mol. Cell. Neurosci. 24, 91–105.PubMedCrossRefGoogle Scholar
  83. Willingham S., Outeiro T. F., DeVit M. J., Lindquist S., and Muchowski P. J. (2003) Yeast genes that enhance the toxicity of a mutant huntingtin or α-synuclein. Science 302, 1769–1772.PubMedCrossRefGoogle Scholar
  84. Zabrocki P., Pellens K., Vanhelmont T., Vandebroek T., Griffioen G., Wera S., et al. (2005) Characterization of α-synuclein aggregation and synergistic toxicity of protein tau in yeast. FEBS J. 272, 1386–1400.PubMedCrossRefGoogle Scholar
  85. Zarranz J. J., Alegre J., Gomez-Esteban J. C., Lezcano E., Ros R., Ampuero I. et al. (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55, 164–173.PubMedCrossRefGoogle Scholar
  86. Zhou Y., Gu G., Goodlett D. R., Zhang T., Pan C., Montine T. J., e al. (2004) Analysis of alpha-synuclein-associated proteins by quantitative proteomics. J. Biol. Chem. 279, 39,155–39,164.Google Scholar
  87. Zimprich A., Biskup S., Leitner P., Lichtner P., Farrer M., Lincoln S., et al. (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Nijee Sharma
    • 1
  • Katrina A. Brandis
    • 1
  • Sara K. Herrera
    • 1
  • Brandon E. Johnson
    • 1
  • Tulaza Vaidya
    • 1
  • Ruja Shrestha
    • 1
  • Shubhik K. DebBurman
    • 1
  1. 1.Biology DepartmentLake Forest CollegeLake Forest

Personalised recommendations