Journal of Molecular Neuroscience

, Volume 27, Issue 3, pp 269–276 | Cite as

Microarray and real-time PCR analyses of gene expression in the honeybee brain following caffeine treatment

Original Article

Abstract

To test the idea that caffeine might induce changes in gene expression in the honeybee brain, we contrasted the transcriptional profiles of control and caffeine-treated brains using high-throughput cDNA microarrays. Additional quantitative real-time PCR was performed on a subset of eight transcripts to visualize the temporal changes induced by caffeine. Genes that were significantly upregulated in caffeine-treated brains included those involved in synaptic signaling (GABA:Na symporter, dopamine D2R-like receptor, and synapsin), cytoskeletal modifications (kinesin and microtubule motors), protein translation (ribosomal protein RpL4, elongation factors), and calcium-dependent processes (calcium transporter, calmodulin-dependent cyclic nucleotide phosphodiesterase). In addition, our study uncovered a number of novel, caffeine-inducible genes that appear to be unique to the honeybee. Time-dependent profiling of caffeine-sensitive gene expression shows significant upregulation 1 h after treatment followed by moderate downregulation after 4 h with no additional changes occuring after 24 h. Our results provide initial evidence that the dopaminergic system and calcium exchange are the main targets of caffeine in the honeybee brain and suggest that molecular responses to caffeine in an invertebrate brain are similar to those in vertebrate organisms.

Index Entries

Drug-induced gene expression dopamine receptor Apis mellifera genome caffeine behaviour 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beggs K. T., Hamilton I. S., Kurshan P. T., Mustard J. A., Mercer A. R. (2005) Characterization of a D2-like dopamine receptor (AmDOP3) in honeybees, Apis mellifera. Insect Biochem. Mol. Biol. 35, 873–882.PubMedCrossRefGoogle Scholar
  2. Carillo R. and Gibson G. (2002) Unusual genetic architecture of natural variation affecting drug resistance in Drosophila melanogaster. Genet. Res. 80, 205–213.CrossRefGoogle Scholar
  3. Ein-Dor L., Kela I., Getz G., Givol D., and Domany E. (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21, 171–178.PubMedCrossRefGoogle Scholar
  4. Grozinger C. M., Sharabash N. M., Whitfield C. W., and Robinson G. E. (2003) Pheromone-mediated gene expression in the honey bee brain. Proc. Natl. Acad. Sci. U. S. A. 100(Suppl. 2), 14,519–14,525.Google Scholar
  5. Honey Bee Genome Project (HBGP) (2004) www.nature.com/nsu/040105/040105-7.htmlGoogle Scholar
  6. Iwata S. I., Hewlett G. H., Ferrell S. T., Kantor L., and Gnegy M. E. (1997) Enhanced dopamine release and phosphorylation of synapsin I and neuromodulin in striatal synaptosomes after repeated amphetamine. J. Pharmacol. Exp. Ther. 283(3), 1445–1452.PubMedGoogle Scholar
  7. Kothapalli R., Yoder S. J., Mane S., and Loughran T. P. Jr. (2002) Microarray results: how accurate are they? BMC Bioinformatics 3, 22–31.PubMedCrossRefGoogle Scholar
  8. Kopf S. R., Melani A., Pedata F., and Pepeu G. (1999) A denosine and memory storage: effect of A(1) and A(2) receptor antagonists. Psychopharmacology (Berl.) 146, 214–219.CrossRefGoogle Scholar
  9. Korkotian E. and Segal M. (1999) Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons. Proc. Natl. Acad. Sci. U. S. A. 96, 12,068–12,072.CrossRefGoogle Scholar
  10. Kucharski R. and Maleszka R. (1998) Arginine Kinase is highly expressed in the compound eye of the honeybee, Apis mellifera. Gene. 211, 343–349.PubMedCrossRefGoogle Scholar
  11. Kucharski R. and Maleszka R. (2002) Evaluation of differential gene expression during behavioral development in the honeybee using microarrays and northern blots. Genome Biol. 3, Research 7.1–7.9.Google Scholar
  12. Kucharski R. and Maleszka R. (2003) Transcriptional profiling reveals multifunctional roles for transferrin in the honeybee (Apis mellifera). J. Insect Sci. 3, 27–36.PubMedGoogle Scholar
  13. Lindskog M., Svenningsson P., Pozzi L., Kim Y., Fienberg A. A., Bibb J. A., et al. (2002) Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine. Nature 418, 774–778.PubMedCrossRefGoogle Scholar
  14. Lorist M. M. and Tops M. (2003) Caffeine, fatigue, and cognition. Brain Cogn. 53, 82–94.PubMedCrossRefGoogle Scholar
  15. Miklos G. L. G. and Maleszka R. (2004) Microarray reality checks in the context of a complex disease. Nat. Biotechnol. 22, 615–621.PubMedCrossRefGoogle Scholar
  16. Mirnics K. (2001) Microarrays in brain research: the good, the bad and the ugly. Nat. Rev. Neurosci. 2, 444–447.PubMedCrossRefGoogle Scholar
  17. Pfaffl M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.Google Scholar
  18. Pongrac J., Middleton F. A., Lewis D. A., Levitt P., and Mirnics K. (2002) Gene expression profiling with DNA microarrays: advancing our understanding of psychiatric disorders. Neurochem. Res. 27, 1049–1063.PubMedCrossRefGoogle Scholar
  19. Scott R., Bourtchuladze R., Gossweiler S., Dubnau J., and Tully T. (2002) CREB and the discovery of cognitive enhancers. J. Mol. Neurosci. 19, 171–177.PubMedCrossRefGoogle Scholar
  20. Schwarzschild M. A., Chen J. F., and Ascherio A. (2002) Caffeinated clues and the promise of adenosine A(2A) antagonists in PD. Neurology 58, 1154–1160.PubMedGoogle Scholar
  21. Stonehouse A. H., Adachi M., Walcott E. C., and Jones F. S. (2003) Caffeine regulates neuronal expression of the dopamine 2 receptor gene. Mol. Pharmacol. 64(6), 1,463–1,473.CrossRefGoogle Scholar
  22. Vawter M. P., Barrett T., Cheadle C., Sokolov B. P., Wood W. H. III, Donovan D. M., et al. (2001) Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res. Bull. 55, 641–650.PubMedCrossRefGoogle Scholar
  23. Walaas S. I., Sedvall G., and Greengard P. (1989) Dopamine-regulated phosphorylation of synaptic vesicle-associated proteins in rat neostriatum and substantia nigra. Neuroscience 29(1), 9–19.PubMedCrossRefGoogle Scholar
  24. Whitfield C. W., Band M. R., Bonaldo M. F., Kumar C. G., Liu L., Pardinas J. R., et al. (2002) Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee. Genome Res. 12, 555–566.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  1. 1.Visual Sciences and Centre for the Molecular Genetics of Development, Research School of Biological SciencesThe Australian National UniversityCanberraAustralia

Personalised recommendations