Journal of Molecular Neuroscience

, Volume 27, Issue 2, pp 167–174

bcl2, bax and nestin in the brains of patients with neurodegeneration and those of normal aging

  • Gang Lu
  • W. H. Kwong
  • Qi Li
  • Xicai Wang
  • Zhongtang Feng
  • David T. Yew
Original Article

Abstract

This study was conducted by employing specimens from the frontal cortices of Alzheimer, multiple-infarct dementia patients, and those of normal aging (age matched to patients). The objective was to evaluate and compare the bcl2, bax, and nestin patterns in these three groups. Using immunocytochemistry, it was observed that bcl2 and bax active sites were colocalized in 45% of cells in Alzheimer, 52% of cells in multiple infarct, and 30% of cells in normal aging. bcl2 and bax could also be separately located in cells of all three groups. bax cells were most prominent in number in Alzheimer patients and least prominent in normal aging. nestin was found in all three groups but was most prominent in the multiple-infarct patients. Both astrocytes and neurons demonstrated positive nestin sites. The difference in pattern between groups will lead to further understanding of cellular changes in neurodegenerative patients and those of normal aging.

Index Entries

Aging Alzheimer multiple infarct bcl2 bax nestin frontal cortex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams J. M. and Cory S. (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322–1326.PubMedCrossRefGoogle Scholar
  2. Alberi S., Raggenbass M., de Bilbao F., and Dubois-Dauphin M. (1996) Axotomized neonatal motoneurons overexpressing the bcl2 proto-oncogene retain functional electrophysiological properties. Proc. Natl. Acad. Sci. U. S. A. 93, 3978–3983.CrossRefGoogle Scholar
  3. Bruggers C. S., Fults D., Perkins S. L., Coffin C. M., and Carroll W. L. (1999) Coexpression of genes involved in apoptosis in central nervous system neoplasms. J. Pediatr. Hematol. Oncol. 21, 19–25.PubMedCrossRefGoogle Scholar
  4. Cao Y. J., Shibata T., and Rainov N. G. (2002) Liposome-mediated transfer of the bcl-2 gene results in neuroprotection after in vivo transient focal cerebral ischemia in an animal model. Gene Ther. 9, 415–419.PubMedCrossRefGoogle Scholar
  5. Carrio R., Lopez-Hoyos M., Jimeno J., Benedict M. A., Merino R., Benito A., Fernandez-Luna J. L., et al. (1996) A1 demonstrates restricted tissue distribution during embryonic development and functions to protect against cell death. Am. J. Pathol. 149, 2133–2142.Google Scholar
  6. Chen S., Pickard J. D., and Harris N. G. (2003) Time course of cellular pathology after controlled cortical impact injury. Exp. Neurol. 182, 87–102.PubMedCrossRefGoogle Scholar
  7. Chong M. J., Murray M. R., Gosink E. C., Russell H. R., Srinivasan A., Kapsetaki M., et al. (2000) Atm and Bax cooperate in ionizing radiation-induced apoptosis in the central nervous system. Proc. Natl. Acad. Sci. U. S. A. 97, 889–894.PubMedCrossRefGoogle Scholar
  8. Colucci-D’Amato G. L., Tino A., Pernas-Alonso R., ffrench-Mullen J. M., and di Porzio U. (1999) Neuronal and glial properties coexist in a novel mouse CNS immortalized cell line. Exp. Cell Res. 252, 383–391.PubMedCrossRefGoogle Scholar
  9. D’Sa-Eipper C., Leonard J. R., Putcha G., Zheng T. S., Flavell R. A., Rakic P., et al. (2001) DNA damage-induced neural precursor cell apoptosis requires p53 and caspase 9 but neither Bax nor caspase 3. Development 28, 137–146.Google Scholar
  10. Duggal N., Schmidt-Kastner R., and Hakim A. M. (1997) Nestin expression in reactive astrocytes following focal cerebral ischemia in rats. Brain Res. 768, 1–9.PubMedCrossRefGoogle Scholar
  11. Engidawork E., Gulesserian T., Seidl R., Cairns N., and Lubec G. (2001) Expression of apoptosis related proteins in brains of patients with Alzheimer’s disease. Neurosci. Lett. 303, 79–82.PubMedCrossRefGoogle Scholar
  12. Ferrer I. and Planas A. M. (2003) Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J. Neuropathol. Exp. Neurol. 62, 329–339.PubMedGoogle Scholar
  13. Guo B., Zhai D., Cabezas E., Welsh K., Nouraini S., Satterthwait A. C. and Reed J. C. (2003) Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423, 456–461.PubMedCrossRefGoogle Scholar
  14. Holmin S., von Gertten C., Sandberg-Nordqvist A. C., Lendahl U., and Mathiesen T. (2001) Induction of astrocytic nestin expression by depolarization in rats. Neurosci. Lett. 314, 151–155.PubMedCrossRefGoogle Scholar
  15. Jellinger K. A. (2000) Cell death mechanisms in Parkinson disease. J. Neural Transm. 107, 1–29.PubMedCrossRefGoogle Scholar
  16. Kakazu A., Chandrasekher G., and Bazan H. E. (2004) HGF protects corneal epithelial cells from apoptosis by the PI-3K/Akt-1/Bad- but not the ERK1/2-mediated signaling pathway. Invest. Ophthalmol. Vis. Sci. 45, 3485–3492.PubMedCrossRefGoogle Scholar
  17. Kroemer G. (1997) The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat. Med. 3, 614–620.PubMedCrossRefGoogle Scholar
  18. Li W. P., Chan W. Y., Lai H. W. L., and Yew D. T. (1997) Terminal dUTP nick end labelling (TUNEL) positive cells in different regions of the brain in normal aging and Alzheimer patients. J. Mol. Neurosci. 8, 75–82.PubMedCrossRefGoogle Scholar
  19. Liu D., Lu C., Wan R., Auyeung W. W., and Mattson M. P. (2002) Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J. Cereb. Blood Flow Metab. 22, 431–443.PubMedCrossRefGoogle Scholar
  20. Lu J., Moochhala S., Kaur C., and Ling E. (2000) Changes in apoptosis-related protein (p53, Bax, Bcl-2 and Fos) expression with DNA fragmentation in the central nervous system in rats after closed head injury. Neurosci. Lett. 290, 89–92.PubMedCrossRefGoogle Scholar
  21. Martinez-Arribas F., Nunez-Villar M. J., Lucas A. R., Sanchez J., Tejerina A., and Schneider J. (2003) Immunofluorometric study of Bcl-2 and Bax expression in clinical fresh tumor samples from breast cancer patients. Anticancer Res. 23, 565–568.PubMedGoogle Scholar
  22. Mazurek U., Bierzynska-Macyszyn G., Gola J., Orchel J., Slowinski J., and Wilczok T. (2001) BCL2 and BAX mRNA concentration profile in fibrillary astrocytoma. Folia Histochem. Cytobiol. 39, 179–180.PubMedGoogle Scholar
  23. Meltzer H., Hatton J. D., and Sang U. H. (1998) Cell type-specific development of rodent central nervous system progenitor cells in culture. J. Neurosurg. 88, 93–98.PubMedCrossRefGoogle Scholar
  24. Middleton G., Wyatt S., Ninkina N., and Davies A. M. (2001) Reciprocal developmental changes in the roles of Bcl-w and Bcl-x (L) in regulating sensory neuron survival. Development 128, 447–457.PubMedGoogle Scholar
  25. Mizuno Y., Takeuchi T., Takatama M., and Okamoto K. (2003) Expression of nestin in Purkinje cells in patients with Creutzfeldt-Jakob disease. Neurosci. Lett. 352, 109–112.PubMedCrossRefGoogle Scholar
  26. Oltvai Z. N., Milliman C. L., and Korsmeyer S. J. (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74, 609–619.PubMedCrossRefGoogle Scholar
  27. Osterhout D. J., Marin-Husstege M., Abano P., and Casaccia-Bonnefil P. (2002) Molecular mechanisms of enhanced susceptibility to apoptosis in differentiating oligodendrocytes. J. Neurosci. Res. 69, 24–29.PubMedCrossRefGoogle Scholar
  28. Ray S. K., Wilford G. G., Crosby C. V., Hogan E. L., and Banik N. L. (1999) Diverse stimuli induce calpain overexpression and apoptosis in C6 glioma cells. Brain Res. 829, 18–27.PubMedCrossRefGoogle Scholar
  29. Rice A. C., Khaldi A., Harvey H. B., Salman N. J., White F., Fillmore H., and Bullock M. R. (2003) Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Exp. Neurol. 183, 406–417.PubMedCrossRefGoogle Scholar
  30. Sahlgren C. M., Mikhailov A., Hellman J., Chou Y. H., Lendahl U., Goldman R. D., and Eriksson J. E. (2001) Mitotic reorganization of the intermediate filament protein nestin involves phosphorylation by cdc2 kinase. J. Biol. Chem. 276, 16456–16463.PubMedCrossRefGoogle Scholar
  31. Seo S. Y., Chen Y. B., Ivanovska I., Ranger A. M., Hong S. J., Dawson V. L., et al. (2004) BAD is a pro-survival factor prior to activation of its pro-apoptotic function. J Biol. Chem. 279, 42240–42249.PubMedCrossRefGoogle Scholar
  32. Siskas N., Lefkopoulos A., Ioannidis I., Charitandi A., and Dimitriadis A. S. (2003) Cortical laminar necrosis in brain infarct: serial MRI. Neuroradiology 45, 283–288.PubMedGoogle Scholar
  33. Sugawara K., Kurihara H., Negishi M., Saito N., Nakazato Y., Sasaki T., and Takeuchi T. (2002) Nestin as a marker for proliferative endothelium in gliomas. Lab. Invest. 82, 345–351.PubMedGoogle Scholar
  34. Tanaka T., Hanafusa N., Ingelfinger J. R., Ohse T., Fujita T., and Nangaku M. (2003) Hypoxia induces apoptosis in SV40-immortalized rat proximal tubular cells through the mitochondrial pathways, devoid of HIF1-mediated upregulation of Bax. Biochem. Biophys. Res. Commun. 309, 222–231.PubMedCrossRefGoogle Scholar
  35. Tonchev A. B., Yamashima T., Zhao L., Okano H. J., and Okano H. (2003) Proliferation of neural and neuronal progenitors after global brain ischemia in young adult macaque monkeys. Mol. Cell. Neurosci. 23, 292–301.PubMedCrossRefGoogle Scholar
  36. Wei L. C., Shi M., Chen L. W., Cao R., Zhang P., and Chan Y. S. (2002) Nestin-containing cells express glial fibrillary acidic protein in the proliferative regions of central nervous system of postnatal developing and adult mice. Brain Res. Dev. Brain Res. 139, 9–17.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Gang Lu
    • 1
    • 2
  • W. H. Kwong
    • 1
    • 2
  • Qi Li
    • 1
  • Xicai Wang
    • 2
  • Zhongtang Feng
    • 2
  • David T. Yew
    • 1
  1. 1.Department of AnatomyChinese University of Hong KongHong Kong
  2. 2.Kunming Medical CollegeKunmingChina

Personalised recommendations