Journal of Molecular Neuroscience

, Volume 27, Issue 2, pp 147–155 | Cite as

Light and darkness regulate melanopsin in the retinal ganglion cells of the albino wistar rat

  • Jens Hannibal
  • Birgitte Georg
  • Peter Hindersson
  • Jan Fahrenkrug
Original Article


Circadian rhythms are daily adjusted to the environmental day/night cycle by photic input via the retinohypothalamic tract (RHT). Recent studies indicate that melanopsin, a newly identified opsin-like molecule, is involved in the light responsiveness of retinal ganglion cells (RGCs) constituting the RHT. In the present study, we examined the expression of melanopsin at the mRNA and protein level during a day/night cycle and during prolonged periods of light and darkness in the retina of albino Wistar rats. We observed a diurnal change in melanopsin, with mRNA level being highest at early subjective night and protein level highest at late subjective day. Prolonged exposure to darkness significantly increased melanopsin mRNA level as early as the first day, and the expression continued to increase during 5 d in darkness. The decrease in mRNA level during exposure to constant light was slower. After 48 h of light, the melanopsin mRNA level was significantly reduced, and an almost undetectable level was found after 5 d. The induction of melanopsin by darkness was even more pronounced if darkness was preceded by light suppression for 5 d. By use of immunohistochemistry, we showed that darkness increased the amount of protein in the dendritic processes, resulting in a dense network covering the entire retina. Constant light decreased melanopsin immunostaining time dependently, beginning in the distal dendrites and progressing to the proximal dendrites and the soma. Our observations suggest that the intrinsic light-responsive RGCs adapt their expression of the putative circadian photopigment melanopsin to environmental light and darkness.

Index Entries

Suprachiasmatic nucleus entrainment circadian rhythm melanopsin rat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belenky M. A., Smeraski C. A., Provencio I., Sollars P. J., and Pickard G. E. (2003) Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J. Comp. Neurol. 460, 380–393.PubMedCrossRefGoogle Scholar
  2. Berson D. M., Dunn F. A., and Takao M. (2002) Photo-transduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073.PubMedCrossRefGoogle Scholar
  3. Cagampang F. R., Yang J., Nakayama Y., Fukuhara C., and Inouye S. T. (1994) Circadian variation of arginine-vasopressin messenger RNA in the rat suprachiasmatic nucleus. Brain Res. Mol. Brain Res. 24, 179–184.PubMedCrossRefGoogle Scholar
  4. Castrucci A. D. L., Ihara N., Doyle S. E., Rollag M. D., Provencio I., and Menaker M. (2004) Light regulation of melanopsin positive retinal ganglion cells in the albino hamster. Invest. Ophthalmol. Vis. Sci. 45, Abstr. 4645.Google Scholar
  5. Chomczynski P. and Sacchi N. (1987) Single-step methods of RNA isolation by acid guanidium thiocyanatephenol-chloroform extraction. Anal. Biochem. 162, 156–159.PubMedCrossRefGoogle Scholar
  6. Dacey D. M., Liao H. W., Peterson B. B., Robinson F. R., Smith V. C., Pokorny J., et al. (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749–754.PubMedCrossRefGoogle Scholar
  7. Fahrenkrug J., Nielsen H. S., and Hannibal J. (2004) Expression of melanopsin during development of the rat retina. Neuroreport 15, 781–784.PubMedCrossRefGoogle Scholar
  8. Field M. D., Maywood E. S., O’Brien J. A., Weaver D. R., Reppert S. M., and Hastings M. H. (2000) Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 25, 437–447.PubMedCrossRefGoogle Scholar
  9. Gooley J. J., Lu J., Fischer D., and Saper C. B. (2003) A broad role for melanopsin in nonvisual photoreception. J. Neurosci. 23, 7093–7106.PubMedGoogle Scholar
  10. Hannibal J. (2002) Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res. 309, 73–88.PubMedCrossRefGoogle Scholar
  11. Hannibal J. and Fahrenkrug J. (2004) Melanopsin containing retinal ganglion cells are light responsive from birth. Neuroreport 15, 2317–2320.PubMedCrossRefGoogle Scholar
  12. Hannibal J., Hindersson P., Knudsen S. M., Georg B., and Fahrenkrug J. (2002) The photopigment melanopsin is exclusively present in PACAP containing retinal ganglion cells of the retinohypothalamic tract. J. Neurosci. 22(RC191), 1–7.Google Scholar
  13. Hannibal J., Hindersson P., Óstergaard J., Georg B., Heegaard S., Larsen P. J., and Fahrenkrug J. (2004) Melanopsin is expressed in PACAP containing retinal ganglion cells of the human retinohypothalamic tract. Invest. Ophthalmol. Vis. Sci. 45, 4202–4209.PubMedCrossRefGoogle Scholar
  14. Hannibal J., Mikkelsen J. D., Fahrenkrug J., and Larsen P. J. (1995) Pituitary adenylate cyclase-activating peptide gene expression in corticotropin-releasing factor-containing parvicellular neurons of the rat hypothalamic paraventricular nucleus is induced by colchicines, but not by adrenalectomy, acute osmotic, ether, or restraint stress. Endocrinology 136, 4116–4124.PubMedCrossRefGoogle Scholar
  15. Hattar S., Liao H. W., Takao M., Berson D. M., and Yau K. W. (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070.PubMedCrossRefGoogle Scholar
  16. Klein D. C., Moore R. Y., and Reppert S. M. (1991) Suprachiasmatic nucleus: The Mind’s Clock, Oxford University Press, New York.Google Scholar
  17. Lucas R. J., Hattar S., Takao M., Berson D. M., Foster R. G., and Yau K. W. (2003) Diminished papillary light reflex at high irradiances in melanopsin-knockout mice. Science 299, 245–247.PubMedCrossRefGoogle Scholar
  18. Melyan Z., Tarttelin E. E., Bellingham J., Lucas R. J., and Hankins M. W. (2005) Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433, 741–745.PubMedCrossRefGoogle Scholar
  19. Morin L. P., Blanchard J. H., and Provencio I. (2003) Retinal ganglion cells projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet and visual midbrain: bifurcation and melanopsin immunoreactivity. J. Comp. Neurol. 465, 401–416.PubMedCrossRefGoogle Scholar
  20. Newman L. A., Walker M. T., Brown R. L., Cronin T. W., and Robinson P. R. (2003) Melanopsin forms a functional short-wavelength photopigment. Biochemistry 42, 12734–12738.PubMedCrossRefGoogle Scholar
  21. Panda S., Nayak S. K., Campo B., Walker J. R., Hogenesch J. B., and Jegla T. (2005) Illumination of melanopsin signaling pathway. Science 307, 600–604.PubMedCrossRefGoogle Scholar
  22. Panda S., Sato T. K., Castrucci A. M., Rollag M. D., DeGrip W. J., Hogenesch J. B., et al. (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298, 2213–2216.PubMedCrossRefGoogle Scholar
  23. Provencio I., Jiang G., De grip W. J., Hayes W. P., and Rollag M. D. (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc. Natl. Acad. Sci. U. S. A. 95, 340–345.PubMedCrossRefGoogle Scholar
  24. Provencio I., Rollag M. D., and Castrucci A. M. (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415, 493.PubMedCrossRefGoogle Scholar
  25. Qiu X., Kumbalasiri T., Carlson S. M., Wong K. Y., Krishna V., Provencio I., and Berson D. M. (2005) Induction of photosensitivity by heterologous expression of melanopsin. Nature 433, 745–749.PubMedCrossRefGoogle Scholar
  26. Reppert S. M. and Weaver D. R. (2002) Coordination of circadian timing in mammals. Nature 418, 935–941.PubMedCrossRefGoogle Scholar
  27. Ruby N. F., Brennan T. J., Xie X., Cao V., Franken P., Heller H. C., and O’Hara B. F. (2002) Role of melanopsin in circadian responses to light. Science 298, 2211–2213.PubMedCrossRefGoogle Scholar
  28. Sakamoto K., Liu C., and Tosini G. (2004) Classical photoreceptors regulate melanopsin mRNA levels in the rat retina. J. Neurosci. 24, 9693–9697.PubMedCrossRefGoogle Scholar
  29. Sancar A. (2000) Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. Annu. Rev. Biochem. 69, 31–67.PubMedCrossRefGoogle Scholar
  30. Semo M., Peirson S., Lupi D., Lucas R. J., Jeffery G., and Foster R. G. (2003) Melanopsin retinal ganglion cells and the maintenance of circadian and papillary responses to light in aged rodles/coneless (rd/rd cl) mice. Eur. J. Neurosci. 17, 1793–1801.PubMedCrossRefGoogle Scholar
  31. Sollars P. J., Smeraski C. A., Kaufman J. D., Ogilvie M. D., Provencio I., and Pickard G. E. (2003) Melanopsin and non-melanopsin expressing retinal ganglion cells innervate the hypothalamic suprachiasmatic nucleus. Vis. Neurosci. 20, 601–610.PubMedCrossRefGoogle Scholar
  32. Van Gelder R. N., Gibler T. M., Tu D., Embry K., Selby C. P., Thompson C. L., and Sancar A. (2002) Pleiotropic effects of cryptochromes 1 and 2 on free-running and light-entrained murine circadian rhythms. J. Neurogenet. 16, 181–203.PubMedCrossRefGoogle Scholar
  33. Warren E. J., Allen C. N., Brown R. L., and Robinson D. W. (2003) Intrinsic light responses of retinal ganglion cells projecting to the circadian system. Eur. J. Neurosci. 17, 1727–1735.PubMedCrossRefGoogle Scholar
  34. Wong K. Y., Dunn F. A., and Berson D. M. (2004) Adaptation in ganglion-cell photoreceptors. Soc. Neurosci. 750, 7.Google Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Jens Hannibal
    • 1
  • Birgitte Georg
    • 1
  • Peter Hindersson
    • 1
  • Jan Fahrenkrug
    • 1
  1. 1.Department of Clinical Biochemistry, Bispebjerg HospitalUniversity of CopenhagenCopenhagen NVDenmark

Personalised recommendations