Journal of Molecular Neuroscience

, Volume 27, Issue 1, pp 23–27 | Cite as

Association of MTHFR gene polymorphism C677T with susceptibility to late-onset alzheimer’s disease

  • Binbin Wang
  • Feng Jin
  • Rui Kan
  • Shun Ji
  • Chuanfang Zhang
  • Zeping Lu
  • Chenguang Zheng
  • Ze Yang
  • Li Wang
Original Article

Abstract

Increased total plasma homocysteine (t-Hcy) levels are found to be associated with Alzheimer’s disease (AD). Because the methylenetetrahydrofolate reductase (MTHFR) gene encodes a key enzyme that influences the metabolism of homocysteine, it has been considered as a possible genetic risk factor for AD. Although the MTHFR gene C677T polymorphism has a significant impact on reducing enzyme activity and increasing t-Hcy concentrations, the association between the C677T polymorphism and AD remains inconclusive. To determine whether the MTHFR gene C677T polymorphism contributes to the risk for late-onset AD (LOAD) in Chinese, we have investigated 104 sporadic LOAD patients and 130 healthy controls. The strong associations of the TT genotype and T-allele with LOAD (p=0.001, OR=5.73 95% CI 1.85–17.72, and p=0.002, OR=1.89 95% CI 1.25–2.86) were found. After stratifying by apolipoprotein E allele 4 (APOE ɛ4) status, increased LOAD risks associated with the TT genotype only in the APOE ɛ4 noncarriers (χ2=8.92, df=1, p=0.003) and with the T-allele in either group (χ2=5.18, df=1, p=0.023 and χ2=5.53, df=1, p=0.019) were seen. These results suggest that as an APOE ɛ4 allele-dependent risk factor, the MTHFR gene C677T polymorphism is involved in developing LOAD in Chinese.

Index Entries

Late-onset Alzheimer’s disease methylenetetrahydrofolate reductase (MTHFR) homocysteine apolipoprotein E polymorphism Chinese 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Psychiatric Association (1994) Diagnostic and Staistical Manual of Mental Disorders, 4th ed., American Psychiatric Association, Washington, D.C.Google Scholar
  2. Anello G., Gueant-Rodriguez R. M., Bosco P., Gueant J. L., Romano A., Namour B., et al. (2004) Homocysteine and methylenetetrahydrofolate reductase polymorphism in Alzheimer’s disease. Neuroreport 15, 859–861.PubMedCrossRefGoogle Scholar
  3. Blacker D., Bertram L., Saunders A. J., Moscarillo T. J., Albert M. S., Wiener H., et al. (2003) Results of a high-resolution genome screen of 437 Alzheimer’s disease families. Hum. Mol. Genet. 12, 23–32.PubMedCrossRefGoogle Scholar
  4. Blacker D., Haines J. L., Rodes L., Terwedow H., Go R. C. P., Harrell L. E., et al. (1997) ApoE-4 and age of onset of Alzheimer’s disease: the NIMH genetics initiative. Neurology 48, 139–147.PubMedGoogle Scholar
  5. Boers G. H., Smals A. G., Trijbels F. J., Fowler B., Bakkeren J. A., Schoonderwaldt H. C., et al. (1985) Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. N. Engl. J. Med. 313, 709–715.PubMedCrossRefGoogle Scholar
  6. Brunelli T., Bagnoli S., Giusti B., Nacmias B., Pepe G., Sorbi S., and Abbate R. (2001) The C677T methylenetetrahydrofolate reductase mutation is not associated with Alzheimer’s disease. Neurosci. Lett. 315, 103–105.PubMedCrossRefGoogle Scholar
  7. Frosst P., Blom H. J., Milos R., Goyette P., Sheppard C. A., Matthews R. G., et al. (1995) A candidate genetic risk fact or for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 10, 111–113.PubMedCrossRefGoogle Scholar
  8. Goyette P., Pai A., Milos R., Frosst P., Tran P., Chen Z., et al. (1998) Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR). Mamm. Genome 9, 652–656.PubMedCrossRefGoogle Scholar
  9. Goyette P., Sumner J. S., Milos R., Duncan A. M., Rosenblatt D. S., Matthews R. G., Rozen R. (1994) Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat. Genet. 7, 195–200.PubMedCrossRefGoogle Scholar
  10. Gudnason V., Stansbie D., Scott J., Bowron A., Nicaud V., and Humphries S. (1998) C677T (thermolabile alanine/valine) polymorphism in methylenetetrahydrofolate reductase (MTHFR): its frequency and impact on plasma homocysteine concentration in different European populations. EARS group. Atherosclerosis 136, 347–354.PubMedCrossRefGoogle Scholar
  11. Hiltunen M., Mannermaa A., Thompson D., Easton D., Pirskanen M., Helisalmi S., et al. (2001) Genome-wide linkage disequilibrium mapping of late-onset Alzheimer’s disease in Finland. Neurology 57, 1663–1668.PubMedGoogle Scholar
  12. Ho P. I., Collins S. C., Dhitavat S., Ortiz D., Ashline D., Rogers E., and Shea T. B. (2001) Homocysteine potentiates beta-amyloid neurotoxicity: role of oxidative stress. J. Neurochem. 78, 249–253.PubMedCrossRefGoogle Scholar
  13. Hu X. F., Zhang X. R., Xuan A., and Cao X. R. (2002) Association between Apolipoprotein E gene polymorphism and the patients with persistent vegetative state in the Chinese. Acta Genet. Sinica 29, 757–760.Google Scholar
  14. Jacques P. F., Bostom A. G., Williams R. R., Ellison R. C., Eckfeldt J. H., Rosenberg I. H., et al. (1996) Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 93, 7–9.PubMedGoogle Scholar
  15. Kluijtmans L. A., van den Heuvel L. P., Boers G. H., Frosst P., Stevens E. M., van Oost B. A., et al. (1996) Molecular genetic analysis in mild hyperhomocysteinemia: a common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease. Am. J. Hum. Genet. 58, 35–41.PubMedGoogle Scholar
  16. Kruman I. I., Kumaravel T. S., Lohani A., Pedersen W. A., Cutler R. G., Kruman Y., et al. (2002) Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J. Neurosci. 22, 1752–1762.PubMedGoogle Scholar
  17. McIlroy S. P., Dynan K. B., Lawson J. T., Patterson C. C., and Passmore A. P. (2002) Moderately elevated plasma homocysteine, methylenetetrahydrofolate reductase genotype, and risk for stroke, vascular dementia, and Alzheimer disease in Northern Ireland. Stroke 33, 2351–2356.PubMedCrossRefGoogle Scholar
  18. McKhann G., Drachman D., Folstein M., Datzman R., Price D., and Stadlan E. M. (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34, 939–944.PubMedGoogle Scholar
  19. Myers A., Wavrant De-Vrieze F., Holmans P., Hamshere M., Crook R., Compton D., et al. (2002) Full genome screen for Alzheimer disease: stage II analysis. Am. J. Med. Genet. 114, 235–244.PubMedCrossRefGoogle Scholar
  20. Prasmusinto D., Skrablin S., Fimmers R., and van der Ven K. (2004) Ethnic differences in the association of factor V Leiden mutation and the C677T methylenetetrahydrofolate reductase gene polymorphism with preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 112, 162–169.PubMedCrossRefGoogle Scholar
  21. Rosenberg N., Murata M., Ikeda Y., Opare-Sem O., Zivelin A., Geffen E., and Seligsohn U. (2002) The frequent 5,10-methylenetetrahydrofolate reductase C677T polymorphism is associated with a common haplotype in whites, Japanese, and Africans. Am. J. Hum. Genet. 70, 758–762.PubMedCrossRefGoogle Scholar
  22. Saunders A. M., Strittmatter W. J., Schmechel D., George-Hyslop P. H., Pericak-Vance M. A., Joo S. H., et al. (1993) Association of apolipoprotein E allele ɛ4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43, 1467–1472.PubMedGoogle Scholar
  23. Seripa D., Forno G. D., Matera M. G., Gravina C., Margaglione M., Palermo M. T., et al. (2003) Methylenetetrahydrofolate reductase and angiotensin conver ting enzyme gene polymorphisms in two genetically and diagnostically distinct cohort of Alzheimer patients. Neurobiol. Aging 24, 933–939.PubMedCrossRefGoogle Scholar
  24. Tysoe C., Galinsky D., Robinson D., Brayne C. E., Easton D. F., Huppert F. A., et al. (1997) Analysis of alpha-1 antichymotrypsin, presenilin-1, angiotensin-converting enzyme, and methylenetetrahydrofolate reductase loci as candidates for dementia. Am. J. Med. Genet. 74, 207–212.PubMedCrossRefGoogle Scholar
  25. Wiemels J. L., Smith R. N., Taylor G. M., Eden O. B., Alexander F. E., Greaves M. F.; United Kingdom Childhood Cancer Study investigators (2001) Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc. Natl. Acad. Sci. U. S. A. 98, 4004–4009.PubMedCrossRefGoogle Scholar
  26. Zuliani G., Ble’ A., Zanca R., Munari M. R., Zurlo A., Vavalle C., et al. (2001) Genetic polymorphisms in older subjects with vascular or Alzheimer’s dementia. Acta Neurol. Scand. 103, 304–308.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Binbin Wang
    • 1
    • 2
  • Feng Jin
    • 1
  • Rui Kan
    • 1
    • 2
    • 5
  • Shun Ji
    • 1
    • 2
  • Chuanfang Zhang
    • 1
    • 2
  • Zeping Lu
    • 4
  • Chenguang Zheng
    • 4
  • Ze Yang
    • 3
  • Li Wang
    • 1
  1. 1.Center for Human and Animal Genetics, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
  2. 2.Graduate School of ChineseAcademy of SciencesBeijingChina
  3. 3.Laboratory for Medical Genetics, Institute of GeriatricsBeijing Hospital, Ministry of HealthBeijingChina
  4. 4.Jiangbin HospitalNanningChina
  5. 5.Faculty of Life ScienceInner Mongolia UniversityHuhhotChina

Personalised recommendations