Journal of Molecular Neuroscience

, Volume 26, Issue 2–3, pp 239–244 | Cite as

Adenosine-dopamine interactions revealed in knockout mice

  • Peter Salmi
  • Karima Chergui
  • Bertil B. FredholmEmail author


Neurochemical and pharmcological evidence obtained over the past 300 yr has indicated that adenosine and dopamine interact functionally in the basal ganglia and that such interactions have pathophysiological and theraputic implications. The receptors implicated are adenosine A1 and A2A, and dopamine D1 and D2. There is evidence that dopamine D2 receptor activation in vivo antagonizes tonic activation of adenosine A2A receptors. Thus, acute blockade of dopamine D2 receptors, or disruption of dopamine transmission, unmasks strong adenosine A2A activation. Effects of dopamine D2 blockade are different after adenosine A2A blockade or in A2A knockout mice. Possibly as an adaptation to this increase in adenosine A2A signaling, there is a decreased coupling of A2A receptors to biological effects in dopamine D2 knockout mice. Compared to wild-type mice, adenosine A2A knockout mice show decreased neurodegeneration after treatment with 1-myeyl-1,2,3,6-tetrahydropyridine (MPTP) and show improved motor performance in models of Parkinson’s disease Adenosine A1 receptors are not spccifically located with any dopamine receptor, as is the A2A receptor with D2 receptors. Many A1 receptors are located presynaptically, where they regulate transmitter release. In A1 knockout mice, glutamatergic and dopaminergic transmission is therefore modified.

Index Entries

Adenosine dopamine caffeine knockout mouse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Calabresi P., Centonze D., Pisani A., and Bernardi G. (1997) Endogenous adenosine mediates the presynaptic inhibition induced by aglycemia at corticostriatal synapses. J. Neurosci. 17, 4509–4516.PubMedGoogle Scholar
  2. Chen J. F. (2003) The adenosine A(2A) receptor as an attractive target for Parkinson’s disease treatment. Durg News Perspect. 16, 597–604.CrossRefGoogle Scholar
  3. Chen J. F., Moratalla R., Impagnatiello F., Grandy D. K., Cuellar B., Rubinstein M., et al. (2001a) The role of the D(2) dopamine receptor (D(2)R) in A(2A) adenosine receptor (A(2A)R)-mediated behavioral and cellular responses as revealed by A(2A) and D(2) receptor knockout mice. Proc. Natl. Acad. Sci. U. S. A. 98, 1970–1975.PubMedCrossRefGoogle Scholar
  4. Chen J. F., Xu K., Petzer J. P., Staal R., Xu Y. H., Beilstein M., et al. (2001b) Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J. Neurosci. 21, RC143.Google Scholar
  5. Corvol J. C., Studler J. M., Schonn J. S., Girault J. A., and Herve D. (2001) Galpha(olf) is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J. Neurochem. 76, 1585–1588.PubMedCrossRefGoogle Scholar
  6. Dunwiddie T. V. and Masino S. A. (2001) The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24, 31–55.PubMedCrossRefGoogle Scholar
  7. El Yacoubi M., Ledent C., Menard J. F., Parmentier M., Costentin J., and Vaugeois J. M. (2000) The stimulant effects of caffeine on locomotor behaviour in mice are mediated through its blockade of adenosine A(2A) receptors. Br. J. Pharmacol. 129, 1465–1473.PubMedCrossRefGoogle Scholar
  8. El Yacoubi M., Ledent C., Parmentier M., Costentin J., and Vaugeois J. M. (2001) Adenosine A2A receptor knockout mice are partially protected against drug-induced catalepsy. Neuroreport 12, 983–986.PubMedCrossRefGoogle Scholar
  9. Ferré S., Fredholm B. B., Morelli M., Popoli P., and Fuxe K. (1997) Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci. 20, 482–487.PubMedCrossRefGoogle Scholar
  10. Ferré S., von Euler G., Johansson B., Fredholm B. B., and Fuxe K. (1991) Stimulation of high-affinity adenosine A2 receptors decreases and affinity of dopamine D2 receptors in rat striatal membranes. Proc. Natl. Acad. Sci. U. S. A. 88, 7238–7241.PubMedCrossRefGoogle Scholar
  11. Flagmeyer I., Haas H. L., and Stevens D. R. (1997) Adenosine A1 receptor-mediated depression of corticostriatal and thalamostriatal glutamatergic synaptic potentials in vitro. Brain Res. 778, 178–185.PubMedCrossRefGoogle Scholar
  12. Fredholm B. B. and Dunwiddie T. V. (1988) How does adenosine inhibit transmitter release? Trends Pharmacol. Sci. 9, 130–134.PubMedCrossRefGoogle Scholar
  13. Fredholm B. B. and Svenningsson P. (2003) Adenosine-dopamine interactions: development of a concept and some comments on therapeutic possibilities. Neurology 61(Suppl. 6), S5-S9.PubMedGoogle Scholar
  14. Fredholm B. B., Bättig K., Holmén J., Nehlig A., and Zvartau E. (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 51, 83–153.PubMedGoogle Scholar
  15. Fredholm B. B., Cunha R., and Svenningsson P. (2003) Pharmacology of adenosine A2A receptors and therapeutic applications. Curr. Top. Med. Chem. 3, 413–426.PubMedCrossRefGoogle Scholar
  16. Fuxe K. and Ungerstedt U. (1974) Action of caffeine and theophyllamine on supersensitive dopamine receptors: considerable enhancement of receptor response to treatment with DOPA and dopamine receptor agonists. Med. Biol. 52, 48–54.PubMedGoogle Scholar
  17. Fuxe K., Strömberg I., Popoli P., Rimondini-Giorgini R., Torvinen M., Ogren S. O., et al. (2001) Adenosine receptors and Parkinson’s disease. Relevance of antagonistic adenosine and dopamine receptor interactions in the striatum. Adv. Neurol. 86, 345–353.PubMedGoogle Scholar
  18. Glatt C. E. and Snyders S. H. (1993) Cloning and expression of an adenylyl cyclase localized to the corpus striatum. Nature 361, 536–538.PubMedCrossRefGoogle Scholar
  19. Halldner L., Ådén U., Dahlberg V., Johansson B., Ledent C., and Fredholm B. B. (2004) The adenosine A1 receptor contributes to the stimulatory, but not the inhibitory effect of caffeine on locomotion: a study in mice lacking adenosine A1 and/or A2A receptors. Neuropharmacology 46, 1008–1017.PubMedCrossRefGoogle Scholar
  20. Hervé D., Le Moine C., Corvol J. C., Belluscio L., Ledent C., Fienberg A. A., et al. (2001) Galpha(olf) levels are regulated by receptor usage and control dopamine and adenosine action in the striatum. J. Neurosci. 21, 4390–4399.PubMedGoogle Scholar
  21. Jones D. T., Masters S. B., Bourne H. R., and Reed R. R. (1990) Biochemical characterization of three stimulatory GTP-binding proteins. The large and small forms of Gs and the olfactory-specific G-protein, Golf. J. Biol. Chem. 265, 2671–2676.PubMedGoogle Scholar
  22. Kim D. S. and Palmiter R. D. (2003) Adenosine receptor blockade reverses hypophagia and enhances locomotor activity of dopamine-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 100, 1346–1351.PubMedCrossRefGoogle Scholar
  23. Kull B., Svenningsson P., and Fredholm B. B. (2000) Adenosine A2A receptors are co-localized with and activate Golf in rat striatum. Mol. Pharmacol. 58, 771–777.PubMedGoogle Scholar
  24. Lee K. W., Hong J. H., Choi I. Y., Che Y., Lee J. K., Yang S. D., et al. (2002) Imparied D2 dopamine receptor function in mice lacking type 5 adenylyl cyclase. J. Neurosci. 22, 7931–7940.PubMedGoogle Scholar
  25. Lindskog M., Svenningsson P., Pozzi L., Kim Y., Fienberg A. A., Bibb J. A., et al. (2002) Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine. Nature 418, 774–778.PubMedCrossRefGoogle Scholar
  26. Masino S. A., Diao L., Illes P., Zahniser N. R., Larson G. A., Johansson B., et al. (2002) Modulation of hippocampal glutamatergic transmission by ATP is dependent on adenosine A1 receptors. J. Pharmacol. Exp. Ther. 303, 356–363.PubMedCrossRefGoogle Scholar
  27. Moore K. A., Nicoll R. A., and Schmitz D. (2003) Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses. Proc. Natl. Acad. Sci. U. S. A. 100, 14397–14402.PubMedCrossRefGoogle Scholar
  28. Scammell T. E., Arrigoni E., Thompson M. A., Ronan P. J., Saper C. B., and Greene R. W. (2003) Focal deletion of the adenosine A1 receptor in adult mice using an adeno-associated viral vector. J. Neurosci. 23, 5762–5770.PubMedGoogle Scholar
  29. Solinas M., Ferré S., You Z. B., Karcz-Kubicha M., Popoli P., and Goldberg S. R. (2002) Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens. J. Neurosci. 22, 6321–6324.PubMedGoogle Scholar
  30. Svenningsson P., Fourreau L., Bloch B., Fredholm B. B., Gonon F., and Le Moine C. (1999a) Opposite tonic modulation of dopamine and adenosine on c-fos mRNA expression in striatopallidal neurons. Neuroscience 89, 827–837.PubMedCrossRefGoogle Scholar
  31. Svenningsson P., Le Moine C., Fisone G., and Fredholm B. B. (1999a) Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog. Neurobiol. 59, 355–396.PubMedCrossRefGoogle Scholar
  32. Svenningsson P., Lindskog M., Ledent C., Parmentier M., Greengard P., Fredholm B. B., and Fisone G. (2002) Regulation of the phosphorylation of the dopamine-and cAMP-regulated phosphoprotein of 32 kDa in viro by dopamine D1, dopamine D2 and adenosine A2A receptors. Proc. Natl. Acad. Sci. U. S. A. 97, 1856–1860.CrossRefGoogle Scholar
  33. Svenningsson P., Lindskog M., Rognoni F., Fredholm B. B., Greengard P., and Fisone G. (1998) Activation of adenosine A2A and dopamine D1 receptors stimulates cyclic AMP-dependent phosphorylation of DARPP-32 in distinct populations of striatal projection neurons. Neuroscience 84, 223–228.PubMedCrossRefGoogle Scholar
  34. Svenningsson P., Nomikos G. G., Ongini E., and Fredholm B. B. (1997) Antagonism of adenosine A2A receptors underlies the behavioural activating effect of caffeine and is associated with reduced expression of messenger RNA for NGFI-A and NGFI-B in caudate-putamen and nucleus accumbens. Neuroscience 79, 753–764.PubMedCrossRefGoogle Scholar
  35. Zahniser N. R., Simosky J. K., Mayfield R. D., Negri C. A., Hanania T., Larson G. A., et al. (2000) Functional uncoupling of adenosine A2A receptors and reduced response to caffeine in mice lacking dopamine D2 receptors. J. Neurosci. 20, 5949–5957.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Peter Salmi
    • 1
  • Karima Chergui
    • 1
  • Bertil B. Fredholm
    • 1
    Email author
  1. 1.Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden

Personalised recommendations