Journal of Molecular Neuroscience

, Volume 26, Issue 2–3, pp 233–238 | Cite as

Functions of heteromeric association between adenosine and P2Y receptors

  • Hiroyasu Nakata
  • Kazuaki Yoshioka
  • Toshio Kamiya
  • Hirofumi Tsuga
  • Koshi Oyanagi
Short Review


It is now well accepted that G protein-coupled receptors (GPCRs) can be directly associated, as either homo-or hetero-oligomers, to alter their functions. G protein-coupled purinergic receptors, classified as adenosine receptors, and P2Y receptors (ATP receptors) are also found to oligomerize each other to alter their pharmacology. Specifically, adenosine receptor of A1 subtype (A1R) is able to form a heteromeric complex with P2Y receptor of P2Y1 type (P2Y1R) either in heterologously transfected cells or in rat brain tissues, as demonstrated by coimmunoprecipitation or bioluminescence resonance energy transfer methods in addition to double immunocytochemistry. It is shown that the heteromerization between A1R and P2Y1R generates an adenosine receptor with P2Y-like agonistic pharmacology, i.e., a potent P2Y1R agonist, adenosine 5′-O-(2-thiodiphosphate), binds the A1R binding pocket of the A1R/P2Y1R complex and inhibits adenylyl cyclase activity via Gi/o protein. This hetero-oligomerization between adenosine receptor and P2Y receptor might be one of the mechanisms for the adenine nucleotide-mediated inhibition of neurotransmitter release. The oligomerization of purinergic receptors is thus considered as an important regulation system in the central nervous system.

Index Entries

GPCR dimer oligomerization purinergic adenosine receptor P2 receptor BRET ATP inhibitory neurotransmission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbracchio M. P., Boeynaems J. M., Barnard E. A., Boyer J. L., Kennedy C., Miras-Portugal M. T., et al. (2003) Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol. Sci. 24, 52–55.PubMedCrossRefGoogle Scholar
  2. Angers S., Salahpour A., and Bouvier M. (2002) Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 42, 409–435.PubMedCrossRefGoogle Scholar
  3. Barajas-Lopez C., Muller M. J., Prieto-Gomez B., and Espinosa-Luna R. (1995) ATP inhibits the synaptic release of acetylcholine in submucosal neurons. J. Pharmacol. Exp. Ther. 274, 1238–1245.PubMedGoogle Scholar
  4. Boehm S. and Kubista H. (2002) Fine tuning of sympathetic transmitter release via ionotropic and metabotropic presynaptic receptors. Pharmacol. Rev. 54, 43–99.PubMedCrossRefGoogle Scholar
  5. Ciruela F., Escriche M., Burgueno J., Angulo E., Casado V., Soloviev M. M., et al. (2001) Metabotropic glutamate 1α and adenosine A1 receptors assemble into functionally interacting complexes. J. Biol. Chem. 276, 18345–18351.PubMedCrossRefGoogle Scholar
  6. Cunha R. A. and Ribeiro J. A. (2000) ATP as a presynaptic modulator. Life Sci. 68, 119–137.PubMedCrossRefGoogle Scholar
  7. Cunha R. A., Sebastiao A. M., and Ribeiro J. A. (1998) Inhibition by ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ecto-nucleotidases into adenosine and channeling to adenosine A1 receptors. J. Neurosci. 18, 1987–1995.PubMedGoogle Scholar
  8. Ferre S., Karcz-Kubicha M., Hope B. T., Popoli P., Burgueno J., Gutierrez M. A., et al. (2002) Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc. Natl. Acad. Sci. U. S. A. 99, 11940–11945.PubMedCrossRefGoogle Scholar
  9. Gines S., Hillion J., Torvinen M., Le Crom S., Casado V., Canela E. I., et al. (2000) Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc. Natl. Acad. Sci. U. S. A. 97, 8606–8611.PubMedCrossRefGoogle Scholar
  10. Hillion J., Canals M., Torvinen M., Casado V., Scott R., Terasmaa A., et al. (2002) Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J. Biol. Chem. 277, 18091–18097.PubMedCrossRefGoogle Scholar
  11. Ikeuchi Y., Nishizaki T., Mori M., and Okada Y. (1996) Adenosine activates the K+ channel and enhances cytosolic Ca2+ release via a P2Y purinoceptor in hippocampal neurons. Eur. J. Pharmacol. 304, 191–199.PubMedCrossRefGoogle Scholar
  12. Kamiya T., Saitoh O., Yoshioka K., and Nakata H. (2003) Oligomerization of adenosine A2A and dopamine D2 receptors in living cells. Biochem. Biophys. Res. Commun. 306, 544–549.PubMedCrossRefGoogle Scholar
  13. Koizumi S. and Inoue K. (1997) Inhibition by ATP of calcium oscillations in rat cultured hippocampal neurones. Br. J. Pharmacol. 122, 51–58.PubMedCrossRefGoogle Scholar
  14. Kunapuli S. P., Dorsam R. T., Kim S., and Quinton T. M. (2003) Platelet purinergic receptors. Curr. Opin. Pharmacol. 3, 175–180.PubMedCrossRefGoogle Scholar
  15. Mendoza-Fernandez V., Andrew R. D., and Barajas-Lopez C. (2000) ATP inhibits glutamate synaptic release by acting at P2Y receptors in pyramidal neurons of hippocampal slices. J. Pharmacol. Exp. Ther. 293, 172–179.PubMedGoogle Scholar
  16. Moore D., Chambers J., Waldvogel H., Faull R., and Emson P. (2000) Regional and cellular distribution of the P2Y1 purinergic receptor in the human brain: striking neuronal localisation. J. Comp. Neurol. 421, 374–384.PubMedCrossRefGoogle Scholar
  17. Ochiishi T., Chen L., Yukawa A., Saitoh Y., Sekino Y., Arai T., et al. (1999) Cellular localization of adenosine A1 receptors in rat forebrain: immunohistochemical analysis using adenosine A1 receptor-specific monoclonal antibody. J. Comp. Neurol. 411, 301–316.PubMedCrossRefGoogle Scholar
  18. Ralevic V. and Burnstock G. (1998) Receptors for purines and pyrimidines. Pharmacol. Rev. 50, 413–492.PubMedGoogle Scholar
  19. Shinozuka K., Bjur R. A., and Westfall D. P. (1988) Characterization of prejunctional purinoceptors on adrenergic nerves of the rat caudal artery. Naunyn Schmiedebergs Arch. Pharmacol. 338, 221–227.PubMedCrossRefGoogle Scholar
  20. Smith A. D., Cheek D. J., Buxton I. L., and Westfall D. P. (1997) Competition of adenine nucleotides for a 1,3-[3H]-dipropyl-8-cyclopentylxanthine binding site in rat vas deferens. Clin. Exp. Pharmacol. Physiol. 24, 492–497.PubMedCrossRefGoogle Scholar
  21. Song S. L. and Chueh S. H. (1996) P2 purinoceptor-mediated inhibition of cyclic AMP accumulation in NG108-15 cells. Brain Res. 734, 243–251.PubMedCrossRefGoogle Scholar
  22. von Kugelgen I., Spath L., and Starke K. (1992) Stable adenine nucleotides inhibit [3H]-noradrenaline release in rabbit brain cortex slices by direct action at presynaptic adenosine A1-receptors. Naunyn Schmiedebergs Arch. Pharmacol. 346, 187–196.CrossRefGoogle Scholar
  23. Xu Y., Piston D. W., and Johnson C. H. (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. U. S. A. 96, 151–156.PubMedCrossRefGoogle Scholar
  24. Yoshioka K., Hosoda R., Kuroda Y., and Nakata H. (2002a) Hetero-oligomerization of adenosine A1 receptors with P2Y1 receptors in rat brains. FEBS Lett. 531, 299–303.PubMedCrossRefGoogle Scholar
  25. Yoshioka K., Matsuda A., and Nakata H. (2001a) Pharmacology of a unique adenosine binding site in rat brain using a selective ligand. Clin. Exp. Pharmacol. Physiol. 28, 278–284.PubMedCrossRefGoogle Scholar
  26. Yoshioka K., Saitoh O., and Nakata H. (2002b) Agonist-promoted heteromeric oligomerization between adenosine A1 and P2Y1 receptors in living cells. FEBS Lett. 523, 147–151.PubMedCrossRefGoogle Scholar
  27. Yoshioka K., Saitoh O., and Nakata H. (2001b) Heteromeric association creates a P2Y-like adenosine receptor. Proc. Natl. Acad. Sci. U. S. A. 98, 7617–7622.PubMedCrossRefGoogle Scholar
  28. Zhang J. M., Wang H. K., Ye C. Q., Ge W., Chen Y., Jiang Z. L., et al. (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40, 971–982.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Hiroyasu Nakata
    • 1
  • Kazuaki Yoshioka
    • 1
  • Toshio Kamiya
    • 1
  • Hirofumi Tsuga
    • 1
  • Koshi Oyanagi
    • 1
  1. 1.Department of Molecular Cell SignalingTokyo Metropolitan Institute for NeuroscienceTokyoJapan

Personalised recommendations